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Computational Design of Synthetic Optical Barcodes in
Microdroplets

Fumiko Kawasaki, Takahiro Mimori, Yuka Mori, Hiroyuki Aburatani, Nozomu Yachie,
Issei Sato,* and Sadao Ota*

Barcodes are useful for identifying objects across time, space, and
information modalities. However, materializing and decoding optical and
multimodal barcodes on microscopic objects remains difficult despite the
increasing need for multiplexed cell analysis. Here, a computational design of
randomly combinatorial is presented, yet decodable barcodes in
microdroplets. The design is based on a novel Real2Sim2Real framework: it
first collects experimental images of optically distinct microparticles, then
simulates massive combinatorial images by randomly assembling the imaged
particles to train a neural network-based decoder. It is demonstrated that the
decoder, even though trained via simulation, accurately identifies the
randomly assembled particles in real hydrogel microdroplets. It also shows
that the microdroplets with an additional DNA barcoding functionality are
applicable to individually link independently measured microscopic images
and transcriptome profiles of pooled single cells.

1. Introduction

Barcodes are optically readable forms useful for identifying an
object often used to track individual objects across physically and
temporally disconnected measurements. In a macroscopic world,
barcodes are designed computationally, printed, or displayed to
be physically assigned to objects of interest and tracked by com-
mon optical devices such as barcode readers and cameras. Due
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to the potential of barcoding for charac-
terizing microscale objects, intensive ef-
forts were made to create various func-
tional microscale barcodes on computed
pre-designs.[1] However, it is demanding to
materialize a large number of pre-designed
optical and multimodal barcodes separately
and assign them individually to randomly
distributed microscopic objects such as bio-
logical cells and microdroplets.

A promising approach for generating
microscopic barcodes that have sufficient
variations and are readily assigned to tar-
get objects is using a random combina-
tion of elemental coding objects as an ob-
ject identifier.[2] However, such randomly
bottom-up-synthesized barcodes are often
difficult to decode in practice, in contrast
to the pre-designed and printed or top-
down-fabricated barcodes, which are easy to

identify and distinct from each other by design. For example,
while segmenting elements has been an indispensable step in
conventional image-based decoding,[2c,3] the elemental objects
often overlap in real images such that the segmentation-based
analysis can be easily ruined. One may think that a data-driven
approach is promising for learning the required image recogni-
tion tasks considering the success in machine learning-based cell
segmentations.[4] However, this approach is also hindered by the
inherent difficulty in experimentally preparing training data of
massive combinations and spatial locations with ground truth
barcode labels. Moreover, existing approaches for random com-
binatorial barcoding have relied on the direct attachment of the
elemental coding objects to the cell membrane or their uptake
by cells, which may cause unexpected cellular responses and in-
crease variability in the number of particles to be tagged.

Here we present a simulation-based design of combinatorial
barcoding material adaptable to the real world. Specifically, we
demonstrate to design optical and multimodal materials that bar-
code target objects by compartmentalizing them with multiple
elemental image barcoding beads (iBBs); a novel Real2Sim2Real
machine learning approach allows us to accurately decode the
iBB combinations without segmenting each iBB. In this design,
we first experimentally synthesize a small variety of iBBs with
well-resolved spectral properties and obtain microscopic images
of each (Figure 1. top left). Using the real images of the beads,
we then computationally generate numerous images contain-
ing multiple beads with massive combinations and arbitrary
spatial locations in spherical spaces (Figure 1. top right). These
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Figure 1. Computational design of optical barcoding materials based on the randomly assembled combination of image barcoding beads. We realized
randomly combinatorial, yet decodable optical barcoding materials via a Real2Sim2Real machine learning framework: i) We first materialized distinct
types of image-barcoding beads (iBBs) separately and captured their images by optical microscopy. ii) Using the experimentally collected images of
the iBBs, we simulated numerous images of spherical barcoding units, each of which contained an arbitrary combination of iBBs at arbitrary spatial
locations, and iii) then train an end-to-end algorithm named NeuralReader to decipher barcodes from the realistic simulated images. iv) Lastly, the
trained NeuralReader allowed us to decode iBB combinations which were experimentally synthesized and assigned to each object of interest upon
generation.

simulated images are used to train a neural network-based
barcode reader, which we call NeuralReader, to decode the
combinatorial codes in an end-to-end manner (Figure 1. bottom
right). We demonstrate that NeuralReader accurately decodes
combinatorial barcodes, which are materialized in the real world
by encapsulating iBBs inside hydrogel capsules together with
intact micro-objects to be tagged (Figure 1. bottom left).

2. Experimental Generation of Image Barcoding
Materials

We first generated elemental image barcoding beads (iBBs),
wherein we adopted fluorescence spectra as simple and robust
optically readable signatures. Microscale beads made of alginate
hydrogels were created by emulsifying an alginate solution with a
porous glass membrane equipped with an external pressure sys-
tem (Figure 2A,B), followed by a calcium ion-mediated alginate
gelation.[5] Covalent conjugation of three fluorescent molecules
(i.e., cascade blue, AlexaFluor 568, AlexaFluor 647) to the algi-
nate beads at designed ratios results in the generation of twenty-
five distinct image barcodes (Figure 2B; Table S1, Supporting In-
formation); each optical signature of iBBs (iBB types) was dis-
tinctly identified by fluorescence intensity (Figure 2C). In our
design, a combination of multiple iBBs serves as an optically
trackable identifier for a larger number of objects when resid-
ing with them (image-code, Figure 1). To materialize the combi-
natorial barcodes with iBBs, we utilized hydrogel microdroplets
(gel units) to tag single cells, given the wide applicability of mi-
crodroplets for biological and biochemical assays.[6] More con-
cretely, we generated monodisperse water-in-oil hydrogel micro-
droplets encapsulating multiple iBBs with single cells at ran-
dom combinations by microfluidics, followed by extracting the

hydrogels from oil to aqueous media for the down-stream uses
(Figure 2D,E).

3. Computational Design of Optical Barcodes
Based on a Real2Sim2Real Machine Learning

Herein while the possible variation of barcodes rapidly grows
along with the number of iBBs per unit (Figure 2F), it is challeng-
ing to identify densely and randomly encapsulated iBBs from op-
tical images since aggregated and/or out-of-focus beads become
more likely to cause overlaps of signals (Figure 2G). Indeed, a
conventional method based on step-by-step particle segmenta-
tion, intensity quantification, and classification becomes error-
prone as the iBBs in units become dense (herein we performed
such analysis and call it a baseline, Figure S1, Supporting In-
formation). On the other hand, an alternative image recognition
approach of employing supervised machine learning is difficult
since its training requires a massive amount of experimental data
of arbitrary iBB combinations and their spatial configurations
with proper labels.

To overcome the difficulties in identifying iBB combinations,
we propose a computational scheme for the barcode design based
on a Real2Sim2Real machine learning approach (Figure 1), and
thereby realized an end-to-end neural network-based image de-
coder named NeuralReader (Figure 2H right; Figure S2, Sup-
porting Information). Notably, the Real2Sim2Real approach al-
lows us to address the challenge of obtaining enough training
data by simulating various realistic images of randomly assem-
bled iBBs by combining seed experimental images of each iBB.
More specifically, we first image sparsely populated iBBs for each
type on a microscope (Figure 2H left), segment 3D patches of
isolated iBBs from the z-stack images, and prepare a library of
patches after the quality filtering on the imaged beads (Figure 2H
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Figure 2. Generation of random combinatorial barcodes with image barcoding beads (iBBs) and end-to-end, segmentation-free decoding of iBB com-
binations by NeuralReader trained via a real-based simulation scheme. A) Large-scale emulsification of a hydrogel (alginate) solution. B) A schematic
diagram of generating twenty-five iBB types via fluorescence functionalization at designed ratios. C) A scatter plot of fluorescence intensities obtained
for 25 iBB types. The intensities of Alexa Fluor 568 signals and Cascade blue signals were scaled and normalized by intensities of reference Alexa Fluor
647 signals. D) A snapshot of a microfluidics chip during ID-coded unit generation. The scale bar is for 100 μm. E) An example phase contrast image
(left) and a z-projected fluorescence image of the ID-coded units taken using a microscope. White circles drawn in the fluorescence image are for vi-
sualizing how each unit is segmented (right). Cells were stained with CellMask Green Plasma Membrane Stain. The scale bars are for 75 μm. F) The
number of distinct iBB combinations and an example of simulated optical units are shown for the case with one, five, and ten unique iBBs per unit. G)
Illustration of major failure modes in iBB detection with the baseline approach due to an aggregation of beads. On the left panel, FP and FN denote false
positives and negatives, respectively. H) Schematics of the proposed end-to-end neural network for decoding iBB combinations (NeuralReader) and a
data simulation scheme for training the network. In the simulation, z-stack unit images with arbitrary iBB combinations were synthesized by using 3D
patches of isolated iBBs extracted from experimentally imaged sparse single-type iBBs. The whole protocol requires no human annotations for iBB types
and locations. I) The performance of iBB detections with NeuralReader and the baseline approach. The precision, recall, and F-measure of 25-type iBB
detections are shown for the three simulated datasets wherein iBBs per unit are one, five, and ten, respectively. Although both approaches were nearly
perfect on single-iBB units, NeuralReader was much more reliable in the cases with denser iBBs, which were required for uniquely distinguishing more
than thousands of randomly combinatorial barcoding units.

Adv. Optical Mater. 2023, 2302564 © 2023 Wiley-VCH GmbH2302564 (3 of 12)

 21951071, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adom

.202302564 by O
saka U

niversity, W
iley O

nline L
ibrary on [07/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advopticalmat.de


www.advancedsciencenews.com www.advopticalmat.de

middle; Figure S1, Supporting Information). For the training of
NeuralReader, we prepare a set of labeled images with various
iBB combinations by randomly selecting patches from the li-
brary and overlaying those at arbitrary locations. This simulation-
based training strategy is counted as a domain randomization
technique,[7] in which a real-world adaptable object recognizer
is solely trained by an extensive simulation of items at various
possible placements and environmental perturbations. We fur-
ther advanced the technique to incorporate the real iBB images
for the simulation seeds and consider z-stack and overlapped sig-
nals, which are realistic characters confusing microscopic image
analysis.

The architecture of NeuralReader is shown in Figure S2 (Sup-
porting Information), wherein we employ multiple customized
3D convolutions[8] and fully connected layers followed by sig-
moid activations to output twenty-five zero-to-one scores, which
are rounded to predict a combination of iBBs. The input of Neu-
ralReader is a concatenation of z-stack images taken through the
three windows of the fluorescence spectrum around a unit and
an additional mask channel representing the inner space of the
unit. We trained NeuralReader by minimizing a modified cross-
entropy loss for the prediction of iBB combinations with respect
to a synthetic dataset of 10 000 unit images, wherein each unit
contained one to fifteen iBBs. We evaluated the performance
of NeuralReader in detecting iBBs on three datasets of simu-
lated unit images encapsulating one, five, and ten iBBs, respec-
tively, compared with the baseline approach (Figure 2I; Figure S3,
Supporting Information). Notably, the average precision/recall of
NeuralReader for units densely encapsulating iBBs (five and ten)
were 0.99/0.98 and 0.96/0.93, respectively, clearly superior to the
corresponding measures of the baseline method, i.e., 0.88/0.80
and 0.80/0.62.

4. DNA-Functionalized iBBs for Multimodal Data
Integration

The combinatorial design allows us to generate a large number
of unique variations from a small variety of components. By tak-
ing this advantage, we further create a large number of mul-
timodal identifiers from a small variety of microparticles func-
tionalized with optical codes and corresponding DNA-barcodes
(Figure 3A left; Figure S4, Supporting Information). When en-
capsulated with single cells inside droplets, the combinations of
DNA-functionalized iBBs become multimodal single-cell iden-
tifiers dually readable by imaging and sequencing, which we
named image-DNA coding: ID-coding (Figure 3A right). Here
we demonstrate the parallel multi-modal analysis of suspended
single cells in a workflow using ID-coding. After generating ID-
coded gel units of single cells, we imaged the pooled ID-coded
gel units (Figure 3B top), and finally sequenced each unit by
adapting a next-generation sequencing (NGS)-based single cell
analysis (Figure 3B middle). An iBB combination read by Neu-
ralReader serves as an identifier assigned to each single-cell im-
age data, and an iBB combination represented by corresponding
DNA-barcodes serves as an identifier assigned to each single-cell
sequencing data. Matching the imaged and sequenced identifiers
of ID-coded units enables linking the two completely indepen-
dent measurements, optical imaging, and NGS, by single cell-
basis in silico (Figure 3C). In the step of reading the DNA bar-

codes of iBBs together with single-cell transcriptome, we carried
out “single unit” RNA sequencing library preparation by mod-
ifying a previously reported technique for droplet-based single-
cell RNA (scRNA) sequencing (drop-seq),[9] where a whole unit
is encapsulated inside a droplet together with a sequencing bead
(Figure 3D). In the step of identifying the iBB combination of
a sequenced unit, we defined positively detected iBB types when
significant unique molecular identifiers (UMIs) were counted for
the corresponding DNA-barcode compared with a background
UMI distribution of the unit (Figure 3E,F) similarly to the re-
ported barcode identification strategy.[10]

5. Single-Cell Image and RNA Profiling of ID-Coded
Cells

As a demonstration of the multimodal cell barcoding ability of
ID-coding, we experimented on linking single-cell images and se-
quencing data by using a mixed population of K562 and HEK293
cell lines (Figure 4A; Figure S5–S6, Supporting Information). In
the experiment, we first imaged units containing K562 cells and
HEK293 cells separately for assigning the ground truth labels
to each unit (image-labels), then pooled all units to perform the
droplet-based single-unit sequencing (Figures S5A and S6A,B,
Supporting Information). By image pre-processing (Figure S1,
Supporting Information), 5913 units with cellular images were
detected (image-units). By sequencing readout analysis, 384 units
were detected with transcriptome data (seq-units). Transcriptome
profiles of the seq-units appeared in two clusters in a space pro-
jected with UMAP,[11] and we assigned cell type labels (RNA-
labels) to units in the clusters by using a k-nearest neighbors algo-
rithm using reference gene expression data of K562 and HEK293
cell lines (Figure 4B; Figure S7, Supporting Information). We
then decoded iBB combinations in image data using Neural-
Reader. The average numbers of unique iBBs identified per unit
was 4.2 in all NeuralReader outputs (Figure S6D,E, Supporting
Information). We finally linked the images and sequencing data
of a single unit on the basis of matching between NeuralReader
outputs and iBB combinations identified by counting UMIs of
each DNA barcode in the single-unit sequencing data. Herein, we
linked sequencing data and images when a DNA barcode com-
bination assigned to a single unit matches a uniquely identified
iBB combination using NeuralReader within two-edit distance,
wherein each edit step altered an iBB in the combination to one
of its neighboring types on the 5 × 5 matrix reflecting the layout
of fluorescent intensities (Figure S8, Supporting Information).
The consistency of the links was evaluated by cross-checking the
RNA-labels of the seq-units and the ground truth labels of the
linked image units, which were highly concordant as seen in the
image-labels projected on the UMAP space (Figure 4C). Repre-
sentatives of linked iBB combinations, single-cell images, and
gene expression profiles are shown in Figure 4D,E for K562 and
HEK293 cells, respectively: label-free brightfield cellular images
found one-to-one correspondence with scRNA records. As to the
performance of ID-coding, our quantitative evaluation considers
a trade-off between the number of linked units and the accu-
racy (i.e., label consistency between image data and sequencing
data) with several different linking conditions: the threshold for
the minimum number of unique iBBs per unit and the maxi-
mum allowed edit distance between iBB combinatorial patterns.
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Figure 3. Scalable synthesis of image and DNA (ID)-codes and their application for parallel multimodal single-cell analysis. A) The conceptual illustration
of iBBs with DNA barcode functionality and that of ID-coding. B,C) A pooled workflow consisting of generation, imaging, and sequencing of ID-coded
single cells. D) A snapshot of a microfluidic chip during “single unit” sequencing library preparation. The scale bar is for 100 μm. E,F) UMI counts and
identified seq-codes (iBB combinations) of 50 sequenced ID-coded units in an experiment with (E) sparsely encapsulated iBBs (average 1.1 iBBs/unit)
and (F) densely encapsulated iBBs (average 6.0 iBBs/unit).
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Figure 4. Single-cell images and RNA profiles linked by ID-coding. A) An experimental design. B,C) RNA profiles of seq-units in UMAP coordinates, with
cell type labels created based on reference scRNA data (B), and with the ground truth labels of the linked image-units (C). The ground truth labels of
the linked image-units by ID-codes show high consistency with the RNA-labels, where image-units encapsulating at least four unique iBBs and uniquely
matched to the corresponding seq-units within one edit distance were used for linking. D,E) iBB images (layered phase contrast images and z-projected
fluorescent images), iBB combination decoded by NeuralReader, UMI counts of DNA barcodes of individual iBBs, brightfield cell images, and cellular
RNA profiles used for the cell-type labeling from individual linked units whose cellular RNA profiles were characterized as “K562” (D) and “HEK293”
(E) individually. The decoded iBB combinations are presented in 5 × 5 matrices in accordance with the intensity levels of AF568 and cascade blue
fluorescence (Figure 2C). In the matrix showing NeuralReader output, a black, red, and pink cell represents an iBB type detected both by NeuralReader
and DNA barcode analysis, only by NeuralReader, and only by DNA barcode analysis, respectively. The expression levels of 200 genes displayed in the
RNA profiles are z-score normalized, clipped to the range from −2 (blue) to 2 (red), and ordered according to Wilcoxon’s rank-sum test scores from
top left to bottom right. The scale bar is for 20 μm. F) Tradeoffs between the number of linked units and the accuracy of linked units are shown with
respect to linking conditions: the maximum edit distance allowed for linking (0 to 2) and the minimum number of unique iBBs per gel unit (2 to 6). 95%
confidence intervals of the accuracy were calculated using the Clopper-Pearson method. Analysis results of an independently repeated experiment are
presented in Figure S9 (Supporting Information).
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When we used at least two distinct iBBs per unit and allowed up
to an edit distance of two (Figure S8, Supporting Information),
the number of linked units was 124 with 86.3% accuracy (95%
confidence intervals: 79.0 to 91.8%). As we expected, the accu-
racy of linked units can be further improved by tightening the
linking conditions (Figure 4F). Lastly, our evaluation confirmed
that NeuralReader relying on simulation-based training is effec-
tive for real data and essential for accurate linking, as the number
of linked cases and the accuracy of linking were simultaneously
improved from the baseline method with most of the linking con-
ditions (Figure 4F).

Lastly, we present the scalability of our workflow of linking
units across image and sequencing spaces in an experiment us-
ing approximately 3 × 104 ID-coded units. To ensure sufficient
code variations required for unit distinction, we loaded six iBBs
per unit on average and only used units with at least five iBBs
(i.e., minimum of 53130 possible distinct patterns, Figure 2F) in
the linking process. The number of unique unit optical identi-
fiers decoded by NeuralReader was 29501 (Figure S10A, Support-
ing Information), demonstrating the high capacity of our image
coding system at this scale. For the multi-modal analysis, we in-
creased the rate of recovering the ID-coded units after the droplet-
based sequencing library preparation by loading a higher num-
ber of sequencing beads in this step and concatenating sequenc-
ing data based on ID-codes (Figure S10B,C, Supporting Infor-
mation). With this customized protocol of library preparation,
we obtained 3155 sequenced units with at least five iBBs, where
1357 (43.0%) were linked with their corresponding image data
(Figure S10B,C, Supporting Information), showing the practical
per-experiment-linking efficiency for scalable applications. In ad-
dition, the scalability can be further improved by increasing the
color diversity of iBBs and changing the imaging platform to one
with more color channels and higher resolution to the depth di-
rection.

6. Conclusion

In summary, we present the computational design of randomly
combinatorial synthetic barcodes decodable with the neural net-
based, end-to-end identifier, and their real-world implementa-
tion. In the Real2Sim2Real framework introduced here, we com-
putationally synthesized large-scale images of the iBB combina-
tions using experimental images of each iBB and thereby trained
the identifier. The approach circumvents the requirement of a
sufficient set of properly labeled, experimentally obtained train-
ing data for machine learning of the real world. The identifier,
NeuralReader, is proven powerful even in a case when barcode
elements are difficult to identify using conventional segmen-
tation methods. In general, when elemental information can
be obtained experimentally in advance, we anticipate that the
Real2Sim2Real approach is widely applicable to perform elemen-
tal decomposition from measurement data obtained as linear su-
perposition of elemental information, regardless of the dimen-
sion of the measurement data.

By exploiting the large information capacity of image spaces
for object identification, the multimodal barcoding strategy al-
lows the suspended droplets, hydrogels, and cells at a large scale
to become trackable across different time, instruments, and in-
formation modalities. The microdroplet barcoding thus provides

a solution for one of the fundamental limits of suspended pooled
units, the loss of object identity across different measurements.
In ID-coding, we demonstrated the potential of this solution
by enabling the parallel characterization of pooled individual
cells both by optical measurement and a single-cell sequencing
method; such multi-modal profiling is currently of significant in-
terest for high-resolution biology.[12] We note that a strategy of
optically reading DNA barcodes assigned to each cell under mi-
croscopy (e.g., spatial transcriptomics or optical pooled screen-
ing) is powerful and widely adopted in combination with opti-
cal phenotyping methods.[12c,13] Using the same strategy, multi-
modal analysis of pooled suspended cells using a microcham-
ber array has enabled the linking of images and sequencing data
of single cells with high accuracy up to >99%.[12f] Yet, the de-
coding of the DNA barcodes in these strategies requires the se-
quential optical imaging of each biochemical reaction involving
an iterative exchange of reagent solutions; this requirement in-
creases the cost and time for the experiments and basically lim-
its its application to immobile samples. In contrast, our strat-
egy employs multi-modal identifiers which can be read by a sin-
gle round of imaging without the iterative reagent exchange and
molecular profiling on standard sequencers, which significantly
simplifies the decoding process. With our multi-modal identi-
fiers, we demonstrated linking images and sequencing data with
a practical accuracy from 86.3% to nearly perfect (Figure 4F).
Moreover, our strategy will work seamlessly with droplet-centric
assays, which provide a unique, isolated environment for high-
throughput cell evaluations in tandem with single-cell sequenc-
ing and thus has become powerful tools in drug discovery and
gene perturbation analyses.[14] The application is not limited to
suspension cells such as immunological cells and blood cells,
but also to adherent cells detached from the original environ-
ments and suspended in droplets.[15] We thus expect it to find
wide-ranging applications in biology and medicine. Finally, the
combinatorial design for ID-coding is flexible and versatile such
that it can be modified for multiplexed and multimodal observa-
tions other than sequencing.[16] Therefore, we envision that such
barcoded suspended materials potentially broaden applications
of pooled technologies such as flow cytometry and droplet mi-
crofluidics, widely in biology, biotechnology, and chemistry.

7. Experimental Section
Oligonucleotides and Sources of Reagents: DNA oligos were purchased

from Integrated DNA Technologies, Inc. or Fasmac Co., Ltd. Sequences of
primers and DNA oligos are listed in Table S3 (Supporting Information),
and sources of reagents and equipment details are listed in Table S4 (Sup-
porting Information).

PDMS Chip Design and Fabrication: Microfluidic chips were designed
using AutoCAD software (Autodesk, Figure S11, Supporting Information).
Preparation of polydimethylsiloxane (PDMS) microfluidic chips was out-
sourced from YODAKA Co. Ltd. PDMS chips were hydrophobidized by
flowing Aquapel (PPG Industries) through PDMS chips followed by wash-
ing and drying.

iBB Preparation: Sodium alginate ULV-L3G (KIMIKA Co.) was
functionalized with maleimide functional groups by incubating with
EDC (Sigma–Aldrich) and N-𝛽-maleimidopropionic acid hydrazide
(BMPH, ThermoFisherScientific) in the MES buffer (pH 5.5). The
maleimide-functionalized alginate was further incubated with a thiol-
modified DNA oligomer (iBB_universal_ODN, Table S3, Supporting
Information), which was pre-activated with BondBreaker TCEP solution

Adv. Optical Mater. 2023, 2302564 © 2023 Wiley-VCH GmbH2302564 (7 of 12)
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(ThermoFisherScientific). Then, alginate hydrogel beads were generated.
Briefly, a 2% (w/v) aqueous solution of sodium alginate IL-6 (KIMIKA
Co.) and DNA-bearing alginate was mixed with an equal amount of
EDTA-Ca buffer (50 mm CaCl2, 50 mm EDTA, pH 7.2). The solution was
emulsified in Droplet Generator oil for EvaGreen (Biorad) using an SPG
micro kit (SPG) equipped with 5 μm filter at 8−9 kPa. Acetic acid was
added to the oil phase at a final concentration of 0.05% (v/v) to initiate
gelation of alginate.[5] Hydrogel beads were extracted to beads-wash
buffer (10 mm Tris-HCl, 137 mm NaCl, 2.7 mm KCl, 1.8 mm CaCl2, 0.1%
(v/v) Triton X-100, pH 7.5) by addition of perfluoro octanol (FUJIFILM
Wako Chemicals, at a final concentration of 20%, v/v) to the oil phase,
and the aqueous phase was washed with 20% (v/v) perfluoro octanol
in HFE7200 (3 m), and hexane supplemented with 1% (w/v) of Span-80
(Sigma–Aldrich). Fluorescent labeling of the hydrogel beads was achieved
by incubating the beads with EDC and various mixtures of fluorescent
labeling agents (Table S1, Supporting Information) in an MES buffer (pH
5.5) supplemSupporting Informationented with calcium chloride. DNA
labeling of the fluorescently labeled beads was achieved by incubating
the beads with idBB_barcode_ODNs (Tables S2 and S3, Supporting
Information). At each step of the reaction, beads were washed with beads-
wash buffer.

Cells: HEK293 cells were purchased from JCRB CellBank (JCRB9068);
K562 cells were purchased from JCRB CellBank (JCRB0019). Murine
NIH/3T3 cells were purchased from JCRB CellBank (JCRB0615). K562 cells
were grown in RPMI1640 medium (Sigma–Aldrich) supplemented with
10%FBS (Sigma–Aldrich) and 1x Antibiotic Antimycotic (Thermo Fisher
Scientific). HEK293 cells were grown in Minimum Essential Medium Eagle
(Sigma–Aldrich) supplemented with 10% Horse serum (Thermo Fisher
Scientific) and 1x Antibiotic Antimycotic to reach 60–80% confluence.
NIH/3T3 cells (used to estimate the rate of doublet errors during NGS
library preparation, Figure S6a, Supporting Information) were grown in
Dulbecco’s Modified Eagles’ Medium low glucose (Sigma–Aldrich) sup-
plemented with 10% Newborn Calf serum (Thermo Fisher Scientific) and
1x Antibiotic Antimycotic to reach 60–80% confluence. HEK293 cells and
NIH/3T3 cells were treated with TrypLE Express Enzyme (Thermo Fisher
Scientific) for 4 min, harvested by 10 volumes of DPBS. The harvested cell
pellets were resuspended in a solution of CellMask Green Plasma Mem-
brane Stain (Thermo Fisher Scientific) at x1000 dilution in PBS in a 15 mL
low absorption tube, and the cell suspension was incubated at 37 °C for
10 min. The suspension was then pelleted. The pellets were resuspended
in PBS, passed through cell strainers, and pelleted again before use.

Combinatorial ID-Coded Unit Preparation: Cell pellets were resus-
pended in the agarose buffer [0.75% (w/v) Agarose Ultra-low Gelling Tem-
perature (Sigma–Aldrich), 10 mM Tris-HCl, 137 mm NaCl, 2.7 mm KCl, and
1.8 mm CaCl2]. The suspension was passed through pluriStrainer (20 μm),
mixed with iBBs pellets (typically, seven to ten times to the number of
cells), and loaded into a 1 mL plastic syringe. HFE7500 supplemented with
2% 008-fluorosurfactant (RAN Biotechnologies) was loaded into a 10 mL
plastic syringe. Syringes were connected to the droplet generation chip
(Figure S11, Supporting Information). The liquid transfer was carried out
by syringe pumps at a flow rate of 7 μL min−1 (for cell/iBB suspension),
and 25 μL min−1 (for oil), which resulted in monodisperse droplets. After
droplet generation, water-in-oil droplets were cooled at 4 °C at 500 rpm
shaking for 10 min to solidify agarose gel. To the droplets, imaging buffer
[FluoroBrite DMEM (ThermoFisherScientific) supplemented with 2 mm l-
glutamine (Wako)] was slowly added, and hydrogel units were extracted
into the aqueous layer by addition of perfluoro octanol (final concentra-
tion 20% v/v) to the oil layer, and the aqueous layer was washed with 20%
perfluoro octanol in HFE7200, and hexane supplemented with 1% (w/v)
of Span 80.

Imaging: Combinatorial ID-coded units in the imaging buffer were
gently loaded on a glass-bottom 6 well plate (MatTek Corporation) cov-
ered by a round-shaped cover glass (Matsunami Corporation). Unit im-
ages were recorded on InCellAnalyzer6000 (GE Healthcare) at x10 magni-
fication (the objective lens: Nikon 10X/0.45 Plan Apo CFI/60). The pixel
size was 0.65 μm. For each view, z-stack images (5-um pitch) at five chan-
nels (DAPI, FITC, dsRed, Cy5, brightfield) as well as a phase contrast image
at the central z-position.

Single-Unit Sequencing Library Preparation: Combinatorial ID-coded
units were collected and re-suspended in a unit suspension beads-
resuspension buffer (10 mm Tris-HCl, 137 mm NaCl, 2.7 mm KCl, 1.8 mm
CaCl2, pH 7.5) supplemented with 0.1% (w/v) BSA. Sequencing beads
(Macosko-2011-10 V Plus/Barcoded-Seq B, Chemgenes Corporation) were
suspended in a lysis buffer. Droplet generation was carried out using a
PDMS chip at a flow rate of 4 μL min−1 (for unit suspension), 8 μL min−1

(for sequencing beads suspension), and 25 μL min−1 (for Droplet Gen-
erator oil for EvaGreen). At a high loading concentration of sequencing
beads (typically >500 beads μL−1), droplet generation was carried out by
an air pressure-regulated liquid transfer system (Fluigent). Droplets were
incubated at 50 °C for 3 min, cooled down to room temperature, then
broken by the addition of perfluoro octanol. The downstream sequencing
library preparation was carried out by referring to protocols described in
Drop-Seq Laboratory Protocol ver. 3.1.[17] The sequencing library for DNA
barcodes was prepared by referencing CITE-seq & Cell Hashing Protocol
Version 2019-02-1.[18]

Sequencing: All DNA barcode libraries for seq-code and cDNA li-
braries were analyzed on TapeStation2200 (Agilent Technologies), quan-
tified using KAPA Library Quantification Kits (Roche), and sequenced on
Mi-seq (Illumina). The cDNA and DNA barcode libraries were sequenced
with a read length pair of 25 bp/126 bp, and 25 bp/50 bp, individually. A
custom sequencing primer (Custom Read 1 primer; Table S3, Supporting
Information) for the first read was added to the primer mix solution.

Obtaining Images of Individual iBB Types: Individual iBB types were re-
suspended in a solution of 0.75% agarose in 10 mm Tris-HCl, 137 mm
NaCl, 2.7 mm KCl, 1.8 mm CaCl2, 0.1% (v/v) BSA at a concentration of
1 × 105 beads mL−1 and loaded on a glass-bottom well plate individu-
ally. The well was cooled at 4 °C for 10 min and brought back to room
temperature. iBB images were obtained on InCellAnalyzer6000. For each
view, z-stack images (15 images in a 5 μm pitch) at three channels (DAPI,
dsRed, and Cy5) were recorded.

Identification of Barcode Sequences on Elemental iBBs by Sanger Sequenc-
ing: DNA barcodes attached to individual elemental iBBs were amplified
using T24V (Table S3, Supporting Information) and an indexed PCR primer
in a TruSeq small RNA library preparation kit. PCR products were purified
by FastGene Gel/PCR Extraction Kit. Sanger sequencing was outsourced
(Eurofins Genomics K.K. or Fasmac Co., Ltd.).

Generating DNA Barcode Libraries of Elemental iBBs by NGS: Equally
pooled elemental iBBs were resuspended in a solution of 0.75% agarose
in 10 mm Tris-HCl, 137 mm NaCl, 2.7 mm KCl, 1.8 mm CaCl2, 0.1% (v/v)
BSA in a concentration of 6.25 × 105 beads mL−1. The calculated aver-
age number of iBBs per 90 μm droplets in this condition was 0.25, where
most droplets contain either single iBB or no iBB. DNA barcode library
preparation was performed as described in single-unit sequencing library
preparation.

Computational Methods Overview: The data analysis workflow con-
sists of three parts: image analysis, sequencing analysis, and their linking,
as shown in Figure S1 (Supporting Information).

Image Data Analysis: Unit Detection From Phase-Contrast Images: The
location and size of the hydrogel units of each view were identified in the
phase-contrast (PC) image at the central z-position as follows: First, the in-
tensity of the raw PC image was standardized with a linear transformation
and clipped to take values between 0.2 and 0.5. From this image, a Sobel
filter and a Gaussian blur were used to detect the edges of the units, and
Otsu’s thresholding method was applied for binarization. After removing
small objects with an area of fewer than 20ˆ2𝜋 pixels, the central position
and the radius of each unit were identified with the Hough circle trans-
form, wherein the radius was searched between 50 and 85 pixels, and the
accumulation threshold was set to 0.9.

Image Data Analysis: Cell Detection From Brightfield Images: For exper-
imental runs with HEK293 and K562 cells, the cell regions were identified
from the z-stack brightfield (BF) images, where each image was processed
with a Sobel filter, binarized with triangle thresholding, then applied a mor-
phological opening to remove small holes and noises. Each connected
component in this binary stacked image was labeled as a distinct cell re-
gion. The focal depth of the region was determined by peak detection from
the layer-wise means of the gradient root mean squares (GradRMS) in the
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region’s bounding box. Finally, a watershed algorithm was used in the focal
layer of the region to separate adhered or closed multiple cells and assign
single-cell labels.

Image Data Analysis: iBB Segmentation and Fluorescent Intensity Quan-
tification: iBBs were segmented by image-processing and their intensi-
ties were quantified from the z-stack fluorescent images as follows: First,
each z-layer of the Cy5 fluorescence images was binarized with a threshold-
ing method, then disks with up to 10-pixel radius were detected by Hough
transform to identify the center XY coordinates of the iBBs in the layer,
where the largest ones were retained in case of overlap. A layer-wise flu-
orescent intensity of an iBB in each channel was quantified as the mean
intensities in a 4-pixel square around the bead center. To integrate the de-
tected beads across z-layers, a graph was created in which a pair of disks
residing in adjacent z-layers and overlapping in XY coordinates were con-
nected. Then each connected component of the graph was identified as
an iBB, where its Z coordinate was determined with a peak detection from
the layer-wise Cy5 intensities of the bead.

Image Data Analysis: iBB Classification for Baseline Decoder: A classifi-
cation method of iBB types was developed for the segmented iBBs using
their fluorescent intensities. The classified iBB types were used in a unit
as a baseline result of predicting iBB combinations in the unit (Figure S1,
Supporting Information). The classification of the segmented iBBs was
performed as follows: a reference intensity profile was first prepared for
each of the 25 iBB types, wherein the beads were segmented and quanti-
fied their intensities by the aforementioned steps (Figure S1, Supporting
Information). For classifying iBBs with unknown types in a new experi-
mental run, an alignment of the iBBs’ fluorescent intensities between the
run and the reference was required due to the variability of intensity lev-
els across experiments. This alignment was implicitly performed with a
Bayesian inference of a generative model for the iBBs’ intensities as fol-
lows:

Yic = Y(sig)
ic + Y(bg)

ic , Y(sig)
ic |Xic ∼ Pois (Xic) , Y(bg)

ic |Bc ∼ Pois (Bc)

Xic = rcSi
∑K

k=1 ZikUkc, Bc ∼ Gam
(

a0
Bc

, b0
Bc

)
, Si ∼ Gam

(
a0

S, b0
S

)
Zik|𝜋 ∼ Cat (𝜋) , 𝜋 ∼ Dir

(
𝛼0
𝜋

)
, Ukc ∼ Gam

(
a0

Ukc
, b0

Ukc

) (1)

where, Pois, Gam, Cat, and Dir denote the Poisson, the Gamma, the
Categorical, and the Dirichlet distribution, respectively, and variables

Yic, Y(sig)
ic , Y(bg)

ic , Xic, Bc, rc, Si, Zik, Ukc and 𝜋 denote an observed inten-
sity of iBB i in channel c, a signal intensity, a background intensity, the true
signal intensity, the true background intensity, a relative channel intensity,
a signal intensity varied with iBB, a class probability for iBB type k, the rel-
ative intensity of iBB type k in channel c and a ratio of the twenty-five iBB
types, respectively. To infer the posterior probability of each iBB type, i.e.,
P(Zi | Y), a variational approximation[19] was employed to the posterior
distribution of the hidden variables with a full factorization assumption as
follows:

Q
(

Y(sig), Y(bg), S, Z, U, B,𝜋
)
=

[∏
i

(∏
c

Q
(

Y(sig)
ic

)
Q
(

Y(bg)
ic

)
Q (Sic)

)

Q (Zi)]

[∏
c

Q (Bc)
∏

k

Q (Ukc)

]
Q (𝜋) (2)

where Binomial distributions for Q(Y(sig)
ic ) and Q(Y(bg)

ic ), Gamma distribu-
tions for Q(Sic),Q(Bc) and Q(Ukc), and a Dirichlet distribution for Q(𝜋)
were assumed. The Q distributions were updated up to 500 iterations or
until the difference of the evidence lower bound (ELBO) from the previous
step reached less than 10−3.

Image Data Analysis: Simulating Image Barcoding Units Encapsulating
iBBs: Image barcoding units that encapsulated various combinations of
25 iBB types were stimulated by combining experimentally obtained im-
ages of 25 iBBs. As illustrated in Figure 2H, 3D patches of isolated iBB
images were first collected for each of 25 iBB types, then randomly se-
lected, and located these patches within the spheres to compose the im-

ages of spherical units. To collect a set of image patches of isolated iBBs,
25 views of 15 z-stack images were experimentally prepared with a size
of 2048 × 2048 pixels for each of the 25 iBB types. For each view, iBBs
were segmented by image-processing (Figure 2H left; Figure S1, Support-
ing Information), which utilized the Hough circle transform, and detected
the coordinates, radii, and channel intensities of the beads in the images,
where 7322 patches in total with a size of 15 × 80 × 80 voxels were col-
lected. To ensure only a single bead was located at the center of the patches
and no other beads were contained, 6127 clean patches were selected in
total (Figure 2H middle) as follows: For each patch, a max-normalized im-
age of the patch was created by taking the maximum intensity projections
in the Z-direction and normalized intensity values, ensuring the sum of
the intensity equaled 1; for each iBB-type, an averaged image was gener-
ated using the pixel-wise mean of the max-normalized images; patches
were retained only if the root-mean-squared difference between the max-
normalized image and the averaged image of the same iBB-type was below
a threshold value of 5 × 10-3. For the selected patches, the mean and the
standard deviation of the bead radius were 7.30 and 1.01 pixels, respec-
tively. By using a set of the clean patches of iBB images, z-stack images
of barcoding units were simulated with a size of 19 × 170 × 170 voxels,
each containing a spherical unit encapsulating arbitrary combinations of
iBBs. The iBB patches were positioned at random x, y, and z coordinates
within the unit. To account for the physical exclusion volume of the beads,
each bead center’s location from the internal pixels of the spherical unit
was iteratively sampled, ensuring no collisions with the sphere’s surface
or previously sampled beads. To determine the channel-wise intensities
of the image, an estimated background intensities were factored and ad-
justed for background intensities of overlapping patches at each voxel. The
background values of a patch were estimated as the ten percentiles of the
voxel intensities, and these were subtracted prior to the addition.

As a training dataset for NeuralReader, 10 000 z-stack images were com-
putationally generated, where a spherical unit region with a radius of 55
to 75 pixels in the XY scale was set at the center of a stack, and one to fif-
teen iBBs were placed inside of the unit. In addition, to train the network
that correctly ignores unrelated beads, whose fluorescence occasionally
leaks into the unit, iBBs were generated outside of the unit with the num-
ber following a Poisson distribution with a 30% rate of the number of in-
side ones. For the evaluation of iBB detections presented in Figure 2I and
Figure S12 (Supporting Information), ten datasets were generated. Each
of these datasets consisted of z-stack images of units encapsulating one
to ten iBBs and the radius of the units was 65 pixels in the XY scale. To
ensure that at least 1000 iBBs were included in each dataset, 1000 images
for a single iBB dataset, 500 images for datasets with 2 to 4 iBBs, and 200
images for datasets with 5 to 10 iBBs were generated.

Image Data Analysis: Decoding iBB Combinations with NeuralReader:
To accurately decode iBB combinations from z-stack images of the units,
an end-to-end neural network (NeuralReader) based on customized 3D
convolutional layers was developed, as shown in Figure S2 (Supporting
Information). The Keras Framework[20] with Tensorflow[21] backend was
used for the implementation. The input of NeuralReader was a z-stack im-
age with 19 × 170 × 170 voxels with three fluorescence channels (Cy5,
dsRed, and DAPI) and a binary mask image that indicates the region of
the units. The network outputs existence probabilities of 25 iBB types in a
unit.

NeuralReader on the 10 000 simulated images for 300 epochs was
trained, using a batch size of 12. A modified binary cross-entropy (BCE)
loss function was used, where 1% confusion was applied for the prediction
probabilities between neighboring classes. This was achieved by multiply-
ing the corresponding matrix before computing the average BCE for each
iBB type. The Adam optimizer[22] with a base learning rate of 0.001 was
employed and applied a learning rate scheduling[23] with a warm-up pe-
riod of five epochs and a multi-step decay by multiplying the rate by 0.1
at the end of the 150th and 250th epochs. During training, 15% of the
data was set aside for validation purposes. Additionally, data augmenta-
tion techniques were employed: each input z-stack image was subjected
to a random selection of transformations including flipping along the X-,
Y-, and Z-axis; rotation in the XY-plane; shift within 1 pixel in the Z di-
rection; and shifts within 10 pixels in the X and Y directions. To inform the
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basis of architectural decisions for NeuralReader, a summary of prediction
performance was presented, as assessed in the validation split, across dif-
ferent architectures (Table S5, Supporting Information). This includes the
use of a convolutional layer (Conv3D or MMConv3D), the inclusion of a
confusion matrix in the loss function, and the application of the data aug-
mentation. The analysis indicated that each of these components notably
enhanced performance.

At the prediction with NeuralReader for a new dataset, input intensi-
ties of the dataset were calibrated by a linear transformation so that the
channel-wise intensity levels matched those of the reference data used for
training. For this calibration, the iBBs of the dataset were once segmented
and quantified by using the same image processing procedure as in the
baseline approach (Figure S1, Supporting Information), and the intensity
histograms of channels Cy5, dsRed, and DAPI were identified (Figure S6C,
Supporting Information). Then, the highest peak values of the histograms
and the background intensities were estimated and used for determining
the linear transformation.

Sequencing Data Analysis: Read Processing: Reads were processed and
aligned to the reference genome using UMItools,[24] CITE-seq Count,[25]

and STAR aligner.[26] Alignment filtering and manipulations were per-
formed with samtools version 1.1.[27] Further analysis tools were devel-
oped with Bash, R, and Python language.

Sequencing Data Analysis: Filtering and Normalizing scRNA Data:
Unique molecular identifiers (UMIs) of single-cell RNA (scRNA) data
were analyzed with a custom script developed using Scanpy version
1.8.1.[28] For each of the sequenced units (seq-units), we determined
whether the unit contained human or mouse cells by thresholding UMIs
mapped to the reference file GSM1629193_hg19_ERCC [GEO accession
ID GSM1629193], which contained genes of both species. Concretely, the
unit was regarded to contain human (mouse) cells if the number of human
(mouse) UMIs was more than 1000 (500) and that of the mouse (human)
UMIs was less than 100 (50). For the subsequent analysis, only the hu-
man cells were kept and left units with more than 50 expressed genes,
then filtered genes that were expressed in two or more cells. Also, units
with more than 20% mitochondrial gene expression were removed. The
gene expression levels of each unit were normalized by scaling values to
10 000 in total, adding one, and taking the log values.

Sequencing Data Analysis: Identification of iBB Combinations from Se-
quencing Data: A method based on outlier detection was developed to
identify the iBB combination of a seq-unit, i.e., a combination of the 25
iBB types in the unit, from sequencing data. UMI counts for each iBB bar-
code and unmapped were first transformed one by adding one and taking
the log value as input values. Then, a background distribution of the input
values for each unit was estimated by the elliptic envelope algorithm,[29]

which robustly estimated the mean and variance of the signals with out-
liers. To determine the iBB combination of a seq-unit, the existence of each
iBB type was called, when the UMI count for the iBB type was over 50, and
the percentile of the input signal for the iBB type was above the 0.5% point
of the right tail of the background distribution.

Sequencing Data Analysis: HEK293/K562 Classification with scRNA Data:
For the experiments with sequenced units (seq-units) encapsulating
HEK293 and K562 cells, a cell-type classification protocol based on scRNA
data was developed. reference scRNA data of HEK293 cells and K562
cells were prepared, and a mixed dataset of HEK293/K562 cells. The UMI
counts of the scRNA data were filtered and normalized as described in the
previous section. Next, a differential gene set (DGS) from the reference
dataset was identified, where the top 100 highly expressed genes for each
of HEK293 and K562 cell types were identified as DGS based on Wilcoxon’s
rank-sum method (Data S1, Supporting Information). Principal compo-
nent analysis (PCA) was applied to the normalized expression levels of
DGS of the reference dataset.[30] The normalized expression levels of DGS
were projected in the mixed dataset into the space of the top 50 principal
components of the reference datasets. Then, the cell type probability of
each unit as an initial cell-type score was assigned by a k-nearest neighbor
classifier trained with the reference datasets, wherein k = 10 and the Eu-
clidean distance on the projected space were used. The nearest neighbor
graph of units in the mixed dataset was constructed based on the dis-
tance in the projected space. Then, units by the Leiden method[31] with

resolution of 0.1 were clustered, in which the cell-type score of a cluster
was defined as the average of the initial cell-type scores for units belong-
ing to the cluster. Finally, the cell type of a unit in the mixed dataset was
determined as that with the maximum score for the belonging cluster.

Linking Image And Sequenced Units: Image-unit and sequenced unit
(seq-unit) encapsulating cells were linked based on matchings between
the identified iBB combinations between those units (Figure 4B; Figure
S5B, Supporting Information). For each seq-unit, the most probable
image-unit was linked when such an image-unit was uniquely determined
based on an estimation of the matching probability of iBB combinations
between the seq-unit and the image-unit as described below.

Let xi and Nobs denote an identified iBB combination of the i-th image-
unit and the number of observed image-units in a study, respectively. For
a unit with an iBB combination y, P(y → x) denotes as a probability that
the corresponding iBB combination of image unit is missing, i.e., x = ϕ

or observed as x = xi. these quantities were estimated as follows:

P (y → 𝜙) ∝
1 − pobs

pobs
, P (y → xi) ∝

Pmod (y → xi)

Pchance (xi)
(3)

where pobs, Pmod(y → xi), and Pchance(xi) denote a percentage of observ-
able image-units, a probability that an actual combination y is observed
as a modified combination xi, and a probability of finding a combination
xi by chance in a random pool of image-units, respectively. In this study,
the following assumptions were used: i) pobs = 0.8; ii) for the estimation
of Pmod(y → xi), only xi within two edit steps from y were considered, in
which each step modified an iBB type in the code to one of its neighboring
types on the 5 × 5 matrix layout (Figure S8, Supporting Information) with
a rate of |y| × 0.25% or otherwise, unchanged, where |y| denotes the num-
ber of distinct iBB types in y; and iii) the term Pchance(xi) was evaluated as
follows:

Pchance (xi) = 1 − [1 − P0 (xi)]
Nobs (4)

where P0(xi) = 1 ∕ KC|xi| denote a probability of observing a pattern xi
when code patterns with the same number of distinct iBBs |xi| are uni-
formly sampled without replacement from the K = 25 iBB types. For the
evaluation of Pmod, we only counted modified combinations of iBBs up
to two edit steps from the original ones. The terms P(y → ϕ) and P(y →
xi) (i = 1, I, Nobs) were normalized to 1. Finally, an image-unit was paired

with a combination xi to a seq-unit with a combination y only if the P(y →
xi) was the largest among all terms, and xi was the closest pattern in terms

of the edit distance from y; i.e., no other image-units were observed whose
combinations had an equal or a closer edit distance from y than xi.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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