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SUMMARY
While single-cell sequencing technologies provide unprecedented insights into genomic profiles at the
cellular level, they lose the spatial context of cells. Over the past decade, diverse spatial transcriptomics
and multi-omics technologies have been developed to analyze molecular profiles of tissues. In
this article, we categorize current spatial genomics technologies into three classes: optical imaging, po-
sitional indexing, and mathematical cartography. We discuss trade-offs in resolution and scale, identify
limitations, and highlight synergies between existing single-cell and spatial genomics methods. Further,
we propose DNA-GPS (global positioning system), a theoretical framework for large-scale optics-free
spatial genomics that combines ideas from mathematical cartography and positional indexing. DNA-
GPS has the potential to achieve scalable spatial genomics for multiple measurement modalities,
and by eliminating the need for optical measurement, it has the potential to position cells in three-dimen-
sions (3D).
INTRODUCTION

Understanding the cellular architecture of tissues is a major

challenge with tremendous potential impacts across the

life sciences. Single-cell measurement technologies have

enabled high-dimensional, unbiased measurements of tran-

scriptomic, proteomic, genomic, or epigenomic information

in large populations of cells.1–4 However, these technologies

lose spatial context. Spatial genomics has made it possible

to chart the spatial distribution of transcriptional states,5 chro-

matin accessibility,6 and other elements of cell state.7,8 This

article first categorizes current spatial genomics technologies

into three groups, identifying gaps and synergies, then intro-

duces a theoretical framework for optics-free spatial geno-

mics called DNA-GPS (global positioning system) that com-

bines ideas from mathematical cartography and positional

indexing to overcome the gaps in the current technologies.

While DNA-GPS could be implemented with small modifica-

tions to existing positional indexing methods, it has the poten-

tial for further extensions to multi-modal measurement and

three-dimensional (3D) volumes.
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Optical imaging
Since Hooke’s discovery of cells in the 1660s, the microscope

has been an indispensable tool for biological discovery. Today,

gene expression can be imaged through a variety of optics-

based approaches (Figure 1A).

In situ hybridization (ISH) is an imaging system where

reporter probes hybridize to a specific target nucleotide

sequence, enabling the spatial localization of the target

sequence in a histologic section under a microscope.29 Expres-

sion of a target gene over a tissue section can be quantified

from the intensity of the reporter. Fluorescent ISH (FISH) using

fluorescent probes has enabled multiplexed measurements,30

but its scalability has classically been limited to the number

of distinct fluorescent probes that can be imaged simulta-

neously. Recent advances in single-molecule FISH (smFISH)

with super-resolution imaging have enabled localization and

counting of individual RNA molecules over the tissue space,

and combinatorial indexing strategies have expanded the

number of targets to the genomic scale.9–11 In the multiplexed

smFISH approach, each RNA molecule is imaged multiple

times over cycles of different probe hybridizations and
s. Published by Elsevier Inc.
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Figure 1. Overview of spatial genomics

(A) Optical imaging.MERFISH,9 seqFISH+,10 and EEL-FISH11 fall into smFISH category. FISSEQ,12 STARmap,13 and ExSeq14 fall into in situ sequencing category.

(B) Positional indexing. 103 Visium,15 DBiT-seq,16 Spatial-ATAC-seq,6 XYZeq,17 and sci-Space18 fall into a priori indexing category. HDST,19 Slide-seq,20 Seq-

Scope,21 Pixel-seq,22 Stereo-seq,23 and Slide-DNA-seq24 fall into a posteriori indexing category.

(C) Mathematical cartography. DNA microscopy,25 PARSIFT,26 and IPL27 fall into DNA sequencing-based microscopy category. NovoSpaRc28 is a gene

expression cartography method.
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fluorophore quenching, where a unique fluorescent color code

appearing through the imaging cycle is assigned to each RNA

species.9 Scalable fluorescent indexing of many RNA species

has been enabled by two-step smart encoding approaches,

where the first gene specific probes with common anchor se-

quences are further probed by secondary common fluorophore

probes, minimizing the cost of fluorescent probes.9–11 Howev-

er, due to its reliance on super-resolution imaging, smFISH

greatly sacrifices field of view to observe large numbers of

genes. A new technology called EEL-FISH, which transfers tis-

sue RNAs onto a positively charged glass slide by electropho-

resis, has improved scalability by reducing imaging effort. Yet,

it still takes more than 2 days to process �500 genes over

1 cm2.11 Furthermore, smFISH probes designed for one spe-

cies cannot be utilized for other species.

In situ sequencing has been coupled with super-resolution im-

aging to enable genome-scale spatial transcriptomics.12–14 In

this approach, after fixing a tissue section, RNAsare reverse tran-

scribed into complementary (c)DNAs, which are then circularized

and amplified by rolling circle amplification (RCA). Next, the

amplified cDNA sequences are sequenced in situ by

sequencing-by-ligation (where specific fluorescent signals are

spatially obtained over cycles along with the template directed

elongation of sequence strand by short probe ligation). Similar

to smFISH, this approach requires high-resolution imaging, re-

sulting in a small field of view. Expansion microscopy (ExM), a

technology to physically expand tissue using a swellable polymer

gel,31 has also been applied to in situ transcriptomics and
achieved high scalability with better signal separation and re-

agent penetration. Coupling in situ sequencing of short gene

regions as well as ex situ sequencing of longer gene regions,

this expansion sequencing (ExSeq) approachhasenabled spatial

mapping of long sequencing reads.14 As the expansion process

preserves the intact tissue structure, ExSeq has also demon-

strated spatial transcriptomics of a 3D volume; however, the

expansion approach has only be demonstrated in soft tissues.32

Scalable optical imaging has also been developed for other

non-transcriptomic modalities. Multiplexed smFISH and in situ

sequencing have been applied to locate genomic sequences

together with epigenetic marks at molecular resolution, enabling

the identification of high-resolution chromatin structures, but

they are limited to few thousands of cells.33–35 Tissue clarifica-

tion approaches and light-sheet microscopy have also enabled

multiplexed 3D localization of proteins at whole organ scale us-

ing fluorescent-conjugated antibodies, but for a limited number

of protein species.36 In summary, optical imaging technologies

can profile the 3D distribution of molecules across cells or

tissues, but the use of optics introduces fundamental trade-

offs between field of view, resolution, and the number of molec-

ular species to be profiled.

Positional indexing
Positional indexing (Figure 1B) is a category of spatial geno-

mics methods whose concept has been derived from the

widely applied idea of cellular indexing in single-cell genomics

technologies (Box 1). In cellular indexing, cellular materials are
Cell Systems 14, 844–859, October 18, 2023 845



Box 1. Cellular indexing approaches for single-cell genomics

Single-cell RNA sequencing (scRNA-seq) was originally demonstrated in microwells, where individual cells are physically isolated

in wells. In each well, polyadenylated (poly(A)ed) RNA products are captured and reverse transcribed by primers having poly(thy-

mine) (poly(T)) on their 30 ends together with well-specific barcodes. This reverse transcription (RT) reactions fuse the producing

complementary (c)DNA products to the well-specific barcodes. After high-throughput sequencing, single-cell gene expression

profiles can be reconstructed from read counts of genes sorted by the well-specific barcodes.37–39 In 2015, water-in-oil

droplet-based approaches revolutionized scRNA-seq, where single cells are each encapsulated into droplets together with

microbead anchoring poly(T) RT primers encoding a unique bead-specific barcode.40,41 Following microfluidic high-throughput

generation of droplets, single-cell transcriptomes are captured on the beads, and their 30 sequences are fused to the bead-specific

(i.e., cell-specific) barcodes by RT for high-throughput sequencing. Similar to the microwell-based approaches, the total

sequencing reads for gene expression counts are sorted into single cells according to the unique cell-specific barcodes fused

to them. This approach has been widely adopted by the community today and is still under significant development.42–45

Recently, split-and-poolingwasproposed to achieve scalable single-cell genomicswith no single-cell compartmentalization.4,46–48

In split-and-pooling, single cells are first fixedwith their genomicmaterials and split into a handful of wells where their transcriptome

sequences are reverse transcribed and conjugated to well-specific DNA barcodes in situ. The cell populations are then pooled and

split again intomultiplewellswhere their transcriptome sequences are further conjugated to barcodes specific to the second-round

wells. The iterations of this split-and-pooling procedure enable transcripts of every single cell to be tagged with a unique combina-

torial array of barcodes. This approach has been demonstrated to achieve profiling multiple millions of single cells.46,49

Single-cell measurements of molecular profiles that can be converted into a form of DNA sequences have been enabled by these

cellular indexing approaches. For example, similar to the modality of transcriptome measurements achieved by converting RNA

to DNAwith the conjugation to cell-specific barcodes, single-cell surface proteomemeasurement has also been enabled by label-

ing surface proteins using a cocktail of antibodies tethered to their specific DNA barcodes followed by poly(T) sequence.2 This

enabled the simultaneous single-cell measurement of transcriptome and surface proteome profiles. Genomic sequences,3 epige-

netic modifications,50,51 and chromatin structures4,52 have also beenmeasured at the single-cell resolution with the same concept.
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translated into a form of DNA, if needed, and fused to cell-spe-

cific DNA barcodes. The barcoded DNA sequences are identi-

fied by high-throughput sequencing. DNA sequences associ-

ated with single cells are later sorted computationally

according to the cell-specific DNA barcodes.

In positional indexing for spatial genomics, DNA barcodes are

used to index the spatial pixels of an image. For example, in

spatial transcriptomics a tissue slice is first stamped on a pixe-

lated surface of barcoded poly(thymine) (poly(T)) primers for

reverse transcription (RT) of polyadenylated (poly(A)ed) RNAs.

Tissue RNAs are captured and reverse transcribed by their prox-

imal RT primers, resulting in the fusion of positional barcodes to

cDNAs. After sequencing, the gene expression profile of each

pixel is reconstructed computationally from the positional barc-

odes. This approach has great potential scalability because it

allows for reading out the transcriptome in a highly multiplexed

manner by high-throughput DNA sequencing without the need

for a specific probe set or in-tissue optical imaging. Some

methods in this category have already reached single-cell reso-

lution at whole-body scale for organisms such as mice.23
846 Cell Systems 14, 844–859, October 18, 2023
There are two types of indexing approaches to encode posi-

tional information to DNA barcodes: a priori indexing and a pos-

teriori indexing. In a priori positional indexing, as seen in 103Ge-

nomics Visium,15 a set of known DNA barcodes are deposited to

preassigned positions. After applying a tissue slice on the bar-

coded surface, DNA sequences representing molecular profiles

are fused to the positional barcodes and analyzed by

sequencing. The density, size, and number of barcoded spots

determine the field of view and resolution of the spatial genomics

image being obtained.While its scalability has been limited to the

number of DNA barcodes that can be synthesized separately

and deposited to unique spatial positions, combinatorial index-

ing seen in DBiT-seq has broken this linear scalability.16 DBiT-

seq uses a microfluidics device that can create two sets of

unidirectional massively parallel flows on a tissue slice. The first

set of flows provides DNA barcodes of primary (row) coordinates

to the tissue-derived DNA. The second set of flows are

90�-rotated from the first and provide secondary (column) coor-

dinates. The two barcodes are ligated together to encode both

row and column information. This combinatorial row-column



Box 2. Slide-seq

Slide-seq20,53 is a pioneering method for spatial transcriptomics using a posteriori positional indexing strategy that has many sim-

ilarities with Drop-seq,40 a droplet-based method for scRNA-seq (Box 1). Slide-seq also employs barcoded beads that are 10 mm

diameter, made of polystyrene, and surfaced by poly(T) RT primers encoding unique bead-specific barcodes. The barcoded beads

are first densely and randomly deposited on a class surface. The bead layer is then subjected to optical in situ sequencing of a

sequencing-by-ligation method to identify barcode sequences and their locations. After the identification of barcodes and their

coordinates, tissue section is applied on their surface, where released RNAs are captured by their proximal barcoded RT primers

on the beads. Finally, the sequencing library is prepared by RT, followed by PCR amplification. The sequencing reads are analyzed

similarly to that of scRNA-seq, where gene expression profiles of positional barcodes are sorted with their two-dimensional co-

ordinates. Slide-seq has been demonstrated for a range of mouse tissues including hippocampus, cerebellum, liver, and kidney

and revealed the spatial cell state distribution and their molecular profiles across the tissue substructures.

The field of view of Slide-seq is a 3-mm diameter circle since the current protocol uses a 3-mm gasket to distribute barcoded

beads. The same group reported an updated version, Slide-seq V2, in 2020with an improved bead synthesis strategy, sequencing

method, and library preparation protocol.53 Although it largely improved the transcriptome yields compared with the initial version,

the limitation in scale remains. Additionally, like other positional indexing approaches, transcripts from multiple cells may be

captured by the same bead.
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indexing of spatial genomic products has achieved more scal-

able position indexing with minimized barcode members and a

spot size of �10 mm square per side.

In a posteriori positional indexing, clusters of unidentified

monoclonal DNA barcodes are first distributed on a two-dimen-

sional (2D) surface and then later identified by in situ sequencing

or smFISH. In Slide-seq20,53 (Box 2) and HDST,19 barcoded

poly(T) RT primer beads are randomly distributed in space and

then identified by in situ sequencing and smFISH, respectively.

Seq-Scope21 and Pixel-seq22 use an approach similar to Illumina

sequencing: spatially distributedmonoclonal DNA barcode clus-

ters are prepared by bridge PCR amplification of sparsely immo-

bilized DNA barcode molecules on a 2D surface. The sequences

of clonal sequence clusters are then identified via sequencing by

synthesis. Similarly, in Stereo-seq,23 barcoded DNA nanoballs

are generated by RCA, deposited spatially, and then identified

by DNBSEQ sequencing.54 Stereo-seq has achieved unparal-

leled scalability, positioning reads over a 13.2 cm 3 13.2 cm

area at subcellular resolution.

Positional indexing links genomic products to a single spatial

pixel, but these pixels can capture information frommultiple cells

because the pixel boundaries do not align with cell boundaries.

Further, genomic products of single cells are likely to diffuse

before they bind to positional barcodes, blurring the image. To
address this issue, several approaches have been developed

to extend cellular indexing from single-cell genomics to spatial

genomics. In XYZeq17 and sci-Space,18 a tissue sample is first

stamped on a surface of positional barcodes prepared by a priori

indexing. In this approach, the positional barcode molecules are

not fused to the genomic products of cells but to the cells them-

selves. Cells are then dissociated, and their genomic products

and positional barcodes are both indexed by cellular barcodes

using split-and-pooling indexing (Box 1). Both the spatial posi-

tions and genomic profiles of cells can be decoded by high-

throughput sequencing. However, the cells are not localized

with extreme precision: sci-Space has achieved a higher resolu-

tion with a pixel size of 73.2 mm compared with XYZeq with a

pixel size of 500 mm. For precise localization of single cells, this

approach would require smaller positional barcode pixels.

Further, because split-and-pooling loses a significant fraction

of cells, this approach cannot exhaustively scan single-cell

genomic profiles across a tissue section.

Positional indexing has also enabled the measurement of

diverse modalities of molecular profiles in a spatial context. For

example, DBiT-seq has demonstrated simultaneous spatial

profiling of the transcriptome and cell surface proteome.7,16

Slide-seq has enabled spatial genome sequencing by applying

Tn5 transposase that fragments genomicDNAandconcatenates
Cell Systems 14, 844–859, October 18, 2023 847



ll
OPEN ACCESS Synthesis
the fragments to adapter sequences.24 Similarly, DBiT-seq has

also recently beendemonstrated for different genomicmodalities

to identify open chromatin regions, chromatin modifications, and

their combinations with gene expression profiles across a tissue

space.6,8,55

Positional indexing has scaled 2D spatial genomics to the level

of whole organs and small organisms. A priori approaches are

likely reaching the limit of their scalability due to technical limita-

tions in precisely depositing many positional barcodes to corre-

sponding small areas. While a posteriori indexing approaches

have the potential to scale with the growth of massively parallel

sequencing technologies, they require optical in situ sequencing

to retrospectively identify positional barcodes. Therefore, these

positional indexing approaches cannot benefit from advances

in non-optics-based DNA sequencers, such as nanopore

sequencers. Further, the need for optical imaging limits posi-

tional indexing approaches to 2D tissue sections.

Mathematical cartography
The last emerging family of spatial genomics techniques is

mathematical cartography (Figure 1C), where an image is recon-

structed by solving an inverse problem. This eases the experi-

mental burden of directly profiling transcriptional states at pre-

cise positions over large areas and relies only on DNA

sequencing. Mathematical cartography approaches have the

potential to elegantly increase in scale as DNA sequencing tech-

nologies improve, but none of them currently have practical

large-scale demonstrations. In principle, these techniques are

not limited to two dimensions. Currently, this class is repre-

sented by sequencing-based microscopy and gene expression

cartography methods. However, we present a theoretical frame-

work for mathematical cartography, DNA-GPS, which is more

scalable than existing approaches and synergizes with posi-

tional indexing methods while not relying on optical imaging.

DNA microscopy25 offers an alternative to both optical imag-

ing and positional indexing approaches. Similar to positional in-

dexing, it is a sequencing-based approach. However, while

positional indexing technologies require an experimental pro-

cedure to determine their spatial locations, in DNA microscopy,

the locations of spatially distributed molecules are inferred only

from DNA sequencing data where each sequencing read

encodes the information needed to reconstruct its position. Its

first implementation reconstructed the spatial distribution of

RNA molecules over an estimated 250–700 cells. After fixing

cells, target RNA species are reverse transcribed in situ with

primer molecules encoding random short sequences as unique

molecular identifiers (UMIs). The resulting UMI-tagged cDNAs

are then amplified in situ by PCR and their products are allowed

to diffuse spatially. As this in situ PCR step is performed with

primers encoding common sequences and random nucleotides,

the cDNA amplicons are fused with proximal amplicon products

through overlap-extension, resulting in two UMI-tagged gene

products fused with primer-derived random nucleotide seg-

ments at the junction. The resulting random nucleotide pair at

the junction is called a unique event identifier (UEI). The cDNA

sequences, UMIs, and UEIs are readout by high-throughput

DNA sequencing. This sequencing data collectively represent

the physical proximities between every single RNA molecule,

which originally served as a source template for spatially diffused
848 Cell Systems 14, 844–859, October 18, 2023
cDNA amplicons. The spatial positions of the RNA molecules

can be reconstructed with a maximum likelihood procedure,

based on pairwise proximities.

In theory, this reaction can be performed at a tissue scale with

a single readout of high-throughput sequencing. However, this

molecular cartography has only been demonstrated to date

with images consisting of less than a thousand cells due to the

required sequencing depth. Since molecules must be densely

sequenced to reconstruct positions using collisions, both

sequencing and computational efficiency would be needed to

apply this method at a large scale. For example, with �105 mol-

ecules per cell and �106 cells/cm2, reconstructing 100 cm2 of

tissue would require sequencing 1013 molecules and, even if a

sparse binary matrix could be constructed with only 10 neigh-

bors per molecule, would still require storing and processing

100 terabyte (TB) of data. This illustrates the benefit of localizing

cells instead of molecules: while single-molecule resolution may

eventually be useful, there will still be much to be gained from

studying tissue architecture at the level of cells, rather than indi-

vidual molecules within cells. Indeed, some recent single-mole-

cule studies have analyzed their data by aggregating them to the

level of cells.10,23

PARSIFT26 and IPL27 are two theoretical mathematical

cartography approaches.56 In these approaches, a 2D surface

of DNA sequences is charted by planar graph embedding

where the nodes of the graph represent DNA sequence loca-

tions and adjacent sequences are connected by an edge.

The two methods propose different methods for measuring

this adjacency graph, roughly based on concatenating adjacent

barcodes and sequencing. Similar to the first method, both of

these methods would require tremendous sequencing depth

to cover large spatial areas. Further, practical implementations

of spatial genomics based on these approaches remain to be

proposed.

Gene expression cartography is a mathematical framework

that predicts cellular locations directly from single-cell gene

expression profiles obtained by single-cell RNA sequencing

(scRNA-seq). One of the earliest methods in this category is

Seurat,57 which has been demonstrated on zebrafish embryos.

However, it requires additional FISH spatial expression patterns

of several marker genes collected from independent embryos of

the same developmental stage. Therefore, this approach can be

used only when rich spatial gene expression datasets of the

same species at the same biological condition are available.

NovoSpaRc28 is another approach that does not theoretically

rely on auxiliary FISH datasets. Instead, this method relies on

the strong assumption that cells located in spatially close

positions have similar gene expression profiles. This assumption

enables setting up an optimization problem to identify the loca-

tions of cells from their gene expression profiles. Although

NovoSpaRc demonstrated reconstructions of spatial gene

expression profiles from a range of datasets to some degree, im-

ages that were similar to the biological ground-truth samples

could not be obtained unless spatial gene expression patterns

for marker genes were provided to constrain the image recon-

struction process. This is likely because the key assumption of

nearby cells sharing similar transcription profiles fails to hold in

some locations, such as at tissue boundaries. Accordingly,

gene expression cartography is a scalable approach but still
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requires direct measurement of spatial expression patterns for at

least several genes with FISH.

DNA GPS
We now propose DNA-GPS, a theoretical framework for large-

scale optics-free spatial genomics. Similar to other mathematical

cartography methods, DNA-GPS localizes positions using

sequencing information alone. However, DNA-GPS greatly in-

creases scalability by incorporating positional barcodes instead

of resolving individual molecules. These barcodes can be associ-

atedwithspatial pixels, as isdone inpositional indexing, orwith the

cellular barcodes used in single-cell genomics. DNA-GPS local-

izes positional barcodes using manifold learning (Box 3). The

data required for this spatial genomics can be collected entirely

through DNA sequencing, without optics at any stage. Based on

simulations presented below, only 30–500 additional reads per

barcode would need to be sequenced to position each barcode

at 10–30 mm resolution. The majority of mammalian cells are 10–

100 mm in diameter,58–70 though a few cell types are slightly below

10 mm.71–76 Therefore, in principle, DNA-GPS should scale as a

small overhead on total sequencing at the near-single-cell resolu-

tion as DNA sequencing technologies improve.

Our key idea is to introduce an artificial set of ‘‘satellite DNA

barcodes,’’ each of which diffuses in a spatially coherent way

from a random initial position (Figure 2A). The spatially distrib-

uted satellite barcodes can be captured in the same way as

the cellular genomic contents and tagged by positional barco-

des. Therefore, the positional barcodes provide ‘‘information

anchoring’’ between the satellite barcodes and the cellular

genomic contents from the same position. For example, DNA-

GPS can determine the positions and sequences of positional
Box 3. Manifold learning

Manifold learning aims to learn a low-dimensional structure embed

of dimensionality reduction, with the stronger assumption of an u

Principal-component analysis (PCA) can exactly capture linear str

linear, uncorrelated components.77 PCA has high computational

position on the covariance matrix. However, a small number of li

truncated singular value decomposition (SVD). Classic or metric m

learning approach that uses the pairwise distances between dat

relying on a spectral decomposition.

Many times, we want to capture non-linear structures. Non-line

creating a graph on the data by connecting neighboring points, co

of the resulting matrix via a spectral decomposition, where the m

trix.79 Spectral methods include locally linear embeddings (LLEs),

tral decomposition is computationally intensive, but some method

instead of global structure.

Force-directed layout embedding methods offer more scalability,

proximations can be scaled to millions of data points. t-distribute

approximation and projection (UMAP) are two popular force-dire

points as probabilities and minimizes the divergence between

UMAP uses topological structures to capture properties of the da

method to find a low-dimensional Euclidean representation that a

Autoencoders are a class of deep learning models for dimensio

ships.87 Autoencoders are neural networks with internal layers

network to learn a low-dimensional representation of the data to r

scalable. However, it can be difficult to interpret the embeddings
bead barcodes used in Slide-seq (Box 2) with no a priori or a pos-

teriori indexing process. Below, we explain and demonstrate

the idea through simulations. In these simulations, we focus on

one concrete realization of DNA-GPS related to Slide-seq. We

then discuss the broad applicability of DNA-GPS and its poten-

tial synergies with other spatial and singe-cell genomics

methods.

To apply DNA-GPS to determine locations of positional bead

barcodes, similar to those used in Slide-seq, tissue transcrip-

tome and satellite barcodes would both be captured by their

proximal RT primers encoding positional barcodes on spatially

distributed beads and fused to the positional barcode se-

quences by RT and polymerase extension, respectively (Fig-

ure 2B). The locations of bead barcodes could then be recon-

structed using manifold learning to learn the underlying 2D

positions of beads from their satellite barcode count profiles.

This is similar to the GPS used in navigation systems for cars

and cell phones, where devices determine their precise location

on Earth using their distance to multiple satellites. The core prin-

ciple of DNA-GPS is that neighboring points in physical space

will collect similar counts of satellite barcodes because they

are distributed in a spatially coherent way. In mathematical

terms, the measurement process can be understood to embed

the physical 2D positions of bead barcodes into a high-dimen-

sional ‘‘satellite barcode space,’’ where each point is repre-

sented by its vector of satellite barcode counts, similar to how

a transcriptome profile is represented by a high-dimensional

gene expression vector (Figure 2C). The embedded bead layer

forms a low-dimensional manifold, or surface, in high-dimen-

sional satellite barcode space. We provide a precise theorem

statement in the supplemental information (see Method S1 and
ded in a higher dimensional space. It can be thought of as a form

nderlying low-dimensional structure.

uctures such as lines and planes by decomposing the data into

complexity, as it is calculated by performing a spectral decom-

near components can be found more efficiently by performing

ultidimensional scaling (MDS) is another popular linear manifold

a points.78 It similarly has a high computational complexity by

ar spectral methods generally share a three-step process of

nverting the graph to a matrix, and taking a spectral embedding

ethods differ in the process used to convert the graph to a ma-

Isomap, and Laplacian and Hessian eigenmaps.80–83 The spec-

s, such as LLE, are more scalable as they consider small areas

as naively they only require pairwise comparisons and using ap-

d stochastic neighbor embedding (t-SNE) and uniform manifold

cted layout methods. t-SNE represents the similarity between

the high and low-dimensional probability distributions.84,85

ta in the high-dimensional space and then uses a force-based

pproximates the high-dimensional topological structure.86

nality reduction that can capture complex non-linear relation-

that are a lower dimension than the original data, forcing the

econstruct the original data as output. Autoencoders are highly

with respect to the original features.
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Figure 2. DNA-global positioning system

(DNA-GPS)

(A) Conceptual diagram of applying DNA-GPS to

locate spatial positions of Slide-seq barcoded

beads. DNA-GPS infers the spatial coordinates of

beads having unique bead barcodes (BCs). Satellite

barcodes (BCs) released from satellite devices are

concatenate to bead BCs. The satellite BC counts

fused to each bead BC reflect proximities between

the bead and satellite devices and can be used to

infer the locations of bead BCs. Poly(A)ed RNAs

released from a tissue section are also captured,

reverse transcribed and concatenated to bead BCs

so that the transcription profiles can be mapped

onto the reconstructed space.

(B) Hypothetical design to fuse satellite BCs to bead

BCs together with poly(A)ed RNAs (a close-up view

of A). The poly(T) primers encoding bead BCs cap-

ture both poly(A)ed RNAs from nearby cells and

poly(A)-tailed satellite (sBC) from nearby satellite

devices. Reverse transcription and polymerase

extension fuse RNA and satellite BC sequences to

the bead BCs.

(C) Proposed workflow to obtain spatial tran-

scriptomics image using only sequencing data.

Each bead BC is associated with two count profiles:

a gene expression profile by RNA sequence counts

and a satellite BC count profile. The gene expression

profiles are stored as rows of a gene expression

matrix (top) and the satellite BC count profiles are

stored as rows of a satellite BC count matrix (bot-

tom). Because bead BCs that are nearby in physical

space collect similar counts of satellite BCs, we can

use the similarities between satellite BC profiles to

reconstruct locations of bead BCs with manifold

learning. Gene expression profiles of bead BCs are

then mapped to the spatial positions.
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Figure S1). The method is not limited to 2D reconstructions: if a

method were devised to distribute beads and satellites in 3D,

then manifold learning could be applied to reconstruct the 3D

positions. In summary, DNA-GPS usesmanifold learning to learn

the low-dimensional embedding corresponding to the original

bead positions from the high-dimensional vectors of satellite

barcode counts.

Manifold learning methods aim to find a low-dimensional sur-

face, or manifold, embedded in a high-dimensional space. They

can be thought of as a subset of dimensionality reduction

methods, with the stronger assumption of an underlying low-

dimensional structure. For example, t-distributed stochastic

neighbor embedding (t-SNE)84,85 and uniform manifold approxi-

mation and projection (UMAP)86 are frequently used in scRNA-

seq to create visualizations of high-dimensional transcription

profiles88 (Figure 2C). In these visualizations, the low-dimen-

sional structure is an abstract ‘‘manifold of cell states.’’ Manifold

learning has great potential to recover the very concrete mani-

folds of underlying 2D or 3D positions of cells or molecules in

space from higher dimensional data, such as molecular interac-

tions. In the Slide-seq example, the goal is to recover the

positions of bead barcodes on a 2D surface from the satellite

barcode counts. A large number of manifold learning algorithms

exist that vary in their assumptions, limiting what structures they

can recover, and their computational complexity (Box 3). In DNA-

GPS, we use local distances between positional barcodes to
850 Cell Systems 14, 844–859, October 18, 2023
reconstruct their positions because distances plateau for points

that share no reads from a common satellite. This results in a

non-linear manifold structure. As we require the method to scale

to hundreds of thousands or millions of beads, we focused on

force-based methods over spectral approaches.

RESULTS

Simulation design
We performed extensive simulations to test the feasibility of

DNA-GPS and to guide the design of satellite barcode systems.

For our initial simulations, we modeled satellite barcodes as

diffusing from point-sources, producing Gaussian profiles (Fig-

ure 3A). In subsequent simulations, we tested other non-

Gaussian satellite profiles, motivated by possible experimental

implementations of satellite barcodes. We modeled positional

barcodes with Slide-seq beads on which satellite barcodes are

captured. We simulated bead positions using (1) ground-truth

positions from the Slide-seq datasets20 as well as (2) regular

grids of hundreds of thousands of densely packed 10-mm beads

to test scalability. Each bead captures reads from nearby satel-

lite barcodes, where the number of reads is proportional to the

intensity of the satellite barcode’s Gaussian profile at the bead’s

position. We tested the robustness of image reconstruction to

multiple parameters including sequencing depth and diffusion

level of satellite barcodes.
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Figure 3. Simulation of spatial transcriptomics by DNA-GPS

(A) Simulation of satellite devices (filled dots) distributed over barcoded beads (white open circles; 10 mm diameter) based on the density observed in a Slide-seq

dataset. Arbitrarily selected satellites are colored with the Gaussian diffusion of their satellite BCs (blurred pattern) with a standard deviation s of 50 mm rep-

resented by radius circles of the corresponding colors. Scale bars: 50 mm.

(B) Correlation between ground-truth distance and Euclidean distance between normalized satellite BC count profiles for 105 randomly selected pairs of beads

from a synthetic square dataset (C). While the distances are initially correlated, the sBC profile distance plateaus once the two beads share no satellites in

common. This motivates the use of a manifold learning method that preserves local distances.

(C) DNA-GPS reconstructions on a simulated dataset with 105 densely packed beads and three sets of ground-truth bead positions from the Slide-seq dataset.

The top row shows ground-truth positions artificially colored for the simulated data and colored by cell states for the Slide-seq datasets. The middle row shows

the DNA-GPS reconstruction using the same coloring as the top row. The bottom row shows the DNA-GPS reconstruction where each bead is colored by the

distance between the ground truth and reconstructed position after alignment through a simple linear transformation. All reconstructions achieve a median

reconstruction distance below 20 mm using 100,000 satellites/cm2, 50 mm diffusion, and 130 UMIs per bead (556 total reads per bead).
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In practice, beads can vary in quality, with higher quality beads

capturing more reads and vice versa. To mimic an experimental

distribution of bead qualities, we used the distribution of read per

bead counts from the Slide-seq kidney dataset, downsampling

to achieve lower sequencing depths (Figures S2A and S2B).

Further, multiple satellites may share the same barcode, due to

finite satellite barcode complexity and the non-uniform distribu-

tion of barcodes, and reads from satellites sharing the same bar-

code are indistinguishable (Figure S2C). We accounted for this in

our simulations by randomly selecting a barcode for each satel-

lite device from a pool of possible barcodes according to an

experimental distribution of barcode frequencies (Figure S2C).

This corresponds mathematically to a random projection in sat-

ellite barcode space. However, random projections are known to

preserve pairwise distances in high dimensions.89 Indeed, when

we examined the Euclidean distance between beads in ‘‘pro-

jected’’ satellite barcode count space, we found that beads

that are spatially close together share similar satellite barcode

vectors and were close together in high-dimensional space (Fig-

ure 3B). This correlation understandably dropped off at large-

scale distances because satellite barcodes only diffuse to a

limited extent and any pair of beads that share no satellites in
common are roughly the same distance apart in the satellite bar-

code count space.

We found that the UMAP algorithm86 can leverage local dis-

tances in satellite barcode count space to reconstruct the posi-

tions of positional barcodes at 10–30 mm resolution (Figure 3C).

Although UMAP is known to not exactly preserve structures,90

we demonstrate in simulations that it could effectively recon-

struct bead barcode positions at the near-single-cell resolution.

We used a linear transformation to align the output of UMAP to

the ground truth for quantitative comparison, as the output of

UMAP may be scaled, rotated, or flipped relative to the original

embedding, and computed the distance of each reconstructed

position to the ground truth. However, in practice the reconstruc-

tions would not need to be aligned. For both the Slide-seq bead

positions and grids of densely packed beads, we performed a

grid of simulations testing all combinations of 6 diffusion levels,

4 satellite barcode densities, 11 sequencing depths, and

4 UMAP hyperparameter settings (STAR Methods).

Simulation results
In our simulations on densely packed beads, DNA-GPS

achieved reconstructions with as high as 10-mm resolution,
Cell Systems 14, 844–859, October 18, 2023 851
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Figure 4. Single-cell resolution is possible

over a range of physical parameters

(A) The best reconstruction across satellite densities

and UMAP parameters on the synthetic dataset for

each combination of sequencing depth and diffu-

sion level. Images show the distance to the ground

truth for each bead with the median distance inset.

DNA-GPS can achieve reconstructions with as high

as 10 mm resolution, with the flexibility to trade a

small decrease in resolution for a large decrease in

sequencing depth. The reconstructions were suc-

cessful over a wide range of sequencing depths and

diffusion levels.

(B) Complement of the cumulative distribution of

bead distances to ground truth for each of the four

reconstructions (i–iv) indicated in (A). Dashed lines

indicate the 50th and 90th percentiles of beads.

These distributions showed that, while we reported

median values for reconstruction resolution, there

were not many outlier beads that the method could

not place, with >90% of beads within twice the

median distance.

See also Figures S2–S7.
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measured as median distance of a bead in the aligned recon-

struction to the ground truth, with >90% of beads within 20 mm

(Figures 4A and 4B). For the Slide-seq simulations, the best re-

constructions achieved a resolution of 15 mm at as low as

130 UMI (556 reads per bead [rpb]) (Figure S9). As our model de-

pends on UMI counts, while sequencing cost depends on reads,

we provide both values in our results (Figures S5, S6, and S9).

On the dense grids of beads, DNA-GPS achieved a resolution

of 10 mm at as low as 180 UMI (1,110 rpb). However, sequencing

depth can be significantly reduced with only a moderate

decrease in resolution, with DNA-GPS achieving reconstructions

under 20 mm at as few as 40 UMI (90 rpb) and 30 mm resolution

with as few as 15 UMIs per bead (30 rpb).

Further, the reconstructions are robust to variation in physical

parameters and non-Gaussian diffusion (Figures S4–S9). DNA-

GPS achieved reconstructions under 20 mm for all but one

combination of parameters with diffusion R30 mm and all sat-

ellite barcode densities, requiring no more than 180 UMI

(1,110 rpb) (Figure S4). Similarly, 30 mm resolution could be

achieved for all but one combination of parameters at no

more than 85 UMI (280 rpb). For the Slide-seq positions,

DNA-GPS achieved near-single-cell resolution (<30 mm) at all
852 Cell Systems 14, 844–859, October 18, 2023
diffusion levels R30 mm and all satellite

barcode density levels at read depths as

low as 25 UMI (50 rpb). Further, simulating

diffusion from bacterial colonies (STAR

Methods), we found that the simulations

were robust to non-Gaussian diffusion,

achieving peak resolution of 13 and

30 mm resolution at as low as 25 UMI

(50 rpb) (Figure S8).

Our simulations suggest DNA-GPS

could achieve resolutions as high as

10 mm, with the flexibility to trade a moder-

ate decrease in resolution for a significant

decrease in required sequencing depth.
Using experimental values for ground-truth bead positions, sat-

ellite barcode redundancy, and bead quality, we found that our

method can achieve near-single-cell resolution over satellite

densities from 25,000to 250,000 satellite barcodes per cm2,

and diffusion levels from 30 to 100 mm, with the best perfor-

mance occurring with 50 mm diffusion. These results can guide

the development of experimental systems of satellite barcodes

and demonstrate the method is easily scalable to hundreds of

thousands of beads.

Comparison to other spatial genomics technologies
We next sought to compare the potential resolution and scalabil-

ity of DNA-GPS to other state-of-the-art spatial transcriptomics

technologies. Using our simulation results and an exponential

model, we modeled the performance of DNA-GPS as a function

of how deeply we sequence satellite barcodes, as we are able to

localize beads more precisely as barcodes are sequenced more

deeply (Figure 5A). Using this model, we estimated the resolution

(mm) and field-of-view (image width of a square in mm) achieved

by DNA-GPS for different sequencing depths (of satellite barco-

des) and compared them with seven leading methods (Fig-

ure 5B). Intuitively, the number of rpb varies along each curve.
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Figure 5. Comparison of DNA-GPS applied to Slide-seq with other spatial transcriptomics technologies

(A) Best median reconstruction resolution versus mean reads per bead (rpb) obtained from the simulated data sweep with an exponential line of best fit.

(B) Performance of DNA-GPS and current spatial transcriptomics technologies. Lines indicate interpolated DNA-GPS performance estimated for different read

depths for sequencing satellite BCs using the curve fit in (A) and assuming densely packed 10 mmbeads. For DNA-GPS, resolution is given by themedian distance

to the ground truth. For the other technologies (103 Visium,15 DBiT-seq,16 HDST,19 Slide-seq,20 Seq-Scope,21 Pixel-seq,22 Stereo-seq,23 XYZeq,17 and sci-

Space18), resolution is given by the distance between adjacent pixels (or beads) to capture transcriptomes and values are shown based on the largest exper-

imental demonstration in their respective publications. The background color represents read count per pixel (or bead) to readout transcriptome (when a total

read count of 1010 is given). Cellular sizes were estimated as spherical diameters of their volumes collected from BioNumbers.76
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With 10 billion reads (one NovaSeq run), DNA-GPS can localize

108 beads to generate a 10 cm by 10 cm image at the resolution

of individual cells (17 mm).

Current large-scale RNA-seq studies often profile 106 cells at

depths of 5,000 reads per cell.46 Sequencing an additional 500

reads per cell, our simulations suggest that DNA-GPS could

reconstruct cell positions as accurately as 10 mm resolution.

More generally, the cost of DNA-GPS can be thought of as a

percent increase in the original sequencing budget that depends

on the desired sequencing depth for the transcriptome and

desired resolution, where near-single-cell resolution reconstruc-

tions can be achieved by increasing the budget by <10%. As

sequencing costs drop and studies are able to profile larger

cell populations, DNA-GPS could continue to scale as a small

overhead on the original sequencing budget.

Toward an experimental implementation of DNA-GPS
An experimental implementation of DNA-GPS could be achieved

by multiple approaches, where the key components are the

following.

Satellite formation: a large number of satellite barcodes

should be densely distributed to cover the target space, in

which satellite barcodes of a unique sequence are produced

in a single point source. Our simulations suggest there can be

some level of barcode redundancy, consistent with experi-

mentally observed levels (STAR Methods).

Satellite transmission: When transmitting satellite barcodes

to the tissue sample, some diffusion is beneficial so that

spatial beads (or pixels) receive satellite barcodes from mul-

tiple neighboring satellites. Our simulations suggest the

optimal diffusion level is �50 mm for densely packed 10 mm

beads (Figure 4A).

Information anchoring: Satellite barcodes must be captured

together with genomic material from cells, and both are

fused to positional barcodes. This information anchoring al-
lows a spatial genomics image to be formed after satellite

barcodes are used to localize positional barcodes.

There are multiple potential implementations for each of these

components, which are based on existing methods (Figure 6A).

For example, the satellite formation step could be achieved by

culturing engineered bacterial colonies expressing unique satel-

lite barcodes or by forming ‘‘polonies’’ of satellite barcodes

through in-gel PCR (Box 4). Satellite barcodes could then be

transmitted to the surface of positional barcodes or tissue by

either free diffusion or electrophoresis blotting, where diffusion

level could be tuned during this step. Finally, spatially distributed

satellite barcodes and genomic materials could be anchored to

either positional barcodes of pixel-based spatial genomics, or

single-cell barcodes of single-cell genomics.

Thus, one potential end-to-end implementation could stamp

E. coli colonies expressing unique, poly(A)ed satellite RNA barc-

odes onto a surface of Slide-seq barcoded beads of unidentified

locations, followed by the deposition of tissue sample (Fig-

ure 6B). Satellite barcodes and local transcriptomes would

then be captured by positional barcodes on the beads and

sequenced together with the positional barcode sequences.

Spatial transcriptome profiles would then be associated with

barcoded beads’ positions (which are identified using satellite

barcode profiles by DNA-GPS).

To highlight the flexibility of DNA-GPS, we present a second

potential implementation. Instead of using beads, satellite barc-

odes could be directly deposited onto tissue, potentially by using

electrophoresis to improve transfer (Figure 6C).The tissue is then

applied to the paper, where single-stranded satellite barcode

molecules stick to cells (and nuclei).18 After dissociation of the

satellite-attached tissue into single cells, any cellular indexing

single-cell genomics methods (e.g., split-and-pooling and

droplet encapsulation) can conjugate single-cell RNAs (or

DNAs) and their associated satellite barcode profiles to the sin-

gle-cell barcodes, enabling scalable spatial genomics with
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Figure 6. Possible implementations of DNA-GPS for diverse modalities of spatial genomics

(A) The potential implementations of DNA-GPS. Any DNA-GPS implementation requires three components: (1) satellite formation, (2) satellite transmission and (3)

information anchoring. We envision that satellite formation could be implemented by either engineering bacterial colonies each expressing unique satellite BCs or

seeding a gel with unique satellite BC DNA molecules to form polonies (see Box 4). Satellite transmission could be achieved by either free diffusion or elec-

trophoresis blotting. Finally, information anchoring could be implemented by either capturing RNA on positional ID clusters such as barcoded beads or with

standard single-cell genomics methods.

(B) Example 1. E. coli colonies serve as satellite devices and barcoded beads of unidentified bead BCs serve as image pixels. The colonies and then the tissue

sample are stamped onto the beads.

(C) Example 2. Diffused satellite barcodes can be directly deposited to a target tissue section, where single-stranded satellite BCs stick to cells (or nuclei). After

dissociation of the satellite-attached tissue into single cells, any of the single-cell genomics platforms can conjugate single-cell genomic materials and their

satellite BCs to the single-cell identifiers (cell BCs), enabling scalable spatial transcriptomics at the resolution of individual cells.
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single-cell resolution. Theoretically, any modality of high-

coverage single-cell genomics could be transformed into spatial

genomics with this strategy, as long as satellite barcodes can be

captured by single-cell identifiers together with genomicmaterial

of interest.

DISCUSSION

The past decade has witnessed the development of numerous

spatial genomics technologies that can be broadly divided into
854 Cell Systems 14, 844–859, October 18, 2023
optical imaging, positional indexing, and mathematical cartog-

raphy methods. Optical imaging technologies can profile the

3D distribution of molecules across cells or tissues, but the use

of optics introduces fundamental trade-offs between field-of-

view, resolution, and the number of molecular species to be pro-

filed. Positional indexing technologies have scaled 2D spatial

genomics to the level of whole organs and bodies. However, a

priori approaches are limited in scale, and a posteriori ap-

proaches require optical in situ sequencing to retrospectively

identify positional barcodes. Both strategies limit the specimens



Box 4. Potential implementations to realize satellite barcodes

poly(A)

Satellite E. coli device

Paper disc in
E. coli culture

Culture place paper disc
on a LB agar plate

E. coli culture
LB+agarose

Spread and culture
on a LB agar plate

Random DNA
template in PAA gel In-gel PCR

Satellite BC AAAAAEGFP

A)
poly(A)

200 µm

200 µm

200 µm

BACTERIAL COLONIES

Sparsely spread bacterial cells form clonal colonies on an agar gel surface. This phenomenon has widely been adopted in molec-

ular cloning to isolate clonal DNA plasmid products. We propose the use of spatially distributed Escherichia coli colonies as an

option to produce many locally distributed satellite barcodes, where each E. coli cell serves as a satellite device to produce

poly(A)ed satellite RNA barcodes from its plasmid DNA. Upon cell lysis, the unique satellite RNA barcode signals are diffused

from the positions of their source colonies. The challenge is making uniform sizes of colonies as small and dense as possible.

We found that such colonies could be generated by placing a filter paper soaked with a barcoded cell culture on an agar media

and culturing overnight. We also found that cells embedded in a soft agarose with culture media yielded spatially segregated, tiny

colonies.

POLONIES

PCRamplification of sparsely distributed DNAmolecules embedded in polyacrylamide gel confers polymerase colonies (polonies).

Clonal DNA amplicons are produced at proximal but not identical positions to their templates and therefore form diffused patterns

from the original positions along with PCR cycles. Since each polony can consist of unique clonal DNA barcode molecules, pol-

onies can also be used as satellite devices. Overall size and density of polonies are controllable by with gel concentrations, PCR

conditions and the number of template molecules.
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to 2D tissue slices because there has been no efficient approach

to acquire z sections by stamping tissue slices on a surface of

positional barcodes. 3D spatial transcriptomics has been

achieved by in situ sequencing of a small tissue block. However,

this approach is time consuming. Indeed, ExSeq takes 10 h to

localize spatial barcodes over 1 field of view (around

0.01 mm2) across 150 z sections.14 In addition, all the in situ-

sequencing-based approaches cannot take advantage of

advances in non-optical sequencing technologies. While

computational cartography technologies offer the possibility of

localizing positions from sequencing data alone, they have yet

to achieve large-scale demonstrations. DNA-GPS is a theoretical

framework for optics-free mathematical cartography, which al-

lows computational localization of positional barcodes by

applying manifold learning to satellite barcodes.

One of the biggest challenges to implementing DNA-GPS

would be controlling the satellite barcode diffusion pattern.While

we only found small decreases in resolution for non-Gaussian

diffusion, we found these reconstructions were more sensitive

to physical parameters such as satellite device density and diffu-

sion distance (Figure S8). Further, it is possible that chaotic liquid

flows could be induced by stamping satellite barcodes onto a tis-

sue or onto positional barcodes. These chaotic flows couldmake

reconstruction impossible because satellite barcodes would be

distributed incoherently across positional barcodes. It is worth

noting that chaotic flow could potentially affect other spatial

omics technologies that stamp a tissue slice on an array of pixels

because they also capturemRNAmolecules in a buffer. Although

several studies investigated the effect of molecular diffusion,

most of them have only assessed local diffusion profiles by the

distance between observed and expected locations, and the

potential perturbation by the chaotic liquid flow remains to be

addressed.20,23 Thus, understanding the nature of the diffusion

and optimizing the transfer protocol for better reconstruction

by DNA-GPS would also benefit spatial omics technology

development.

While we have presented DNA-GPS as applied to transcrip-

tomic sequencing, the core framework could also be applied to

othermodalities. As seen in the recent extensions of spatial tech-

nologies to various genomic modalities,6–8,16,24,55 the satellite

barcode approach of DNA-GPS should be adaptable to most

omics modalities at scale with proper experimental design. For

example, an ATAC-seq extension would be possible by treating

tissue genomic DNA with Tn5 transposases so that the genomic

fragments from open chromatin regions are captured by the an-

chor barcodes. Further,while positional indexing approaches are

restricted to profiling flat, 2D slices of tissues, DNA-GPS could in

principle profile 3D volumes in an unbiased way, if one could

distribute satellite barcodes uniformly over the volume. A some-

what easier starting point might be curved 2D surfaces, which

could be achieved by flowing satellite barcodes over the surface

an organ or through the interior of the network of blood vessels or

lymph ducts could provide a window into full organisms by flow-

ing satellite barcodes through these natural conduits.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:
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d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials Availability

B Data and code availability

d METHOD DETAILS

B Data generation

B Bead quality and barcode overlap

B Forming the sBC count matrix

B Reconstructions

B Hyperparameter selection

B Aligning reconstructions

B Robustness to physical parameters

B Robustness to bead quality

B Robustness to alternate diffusion schemes

B Slide-seq reconstructions

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

cels.2023.08.005.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Phusion High-fidelity DNA polymerase NEB NEB M0530

KAPA Library Quantification Kit Illumina KAPA Bioscience KK4824

5x Phusion HF Buffer NEB B0518S

dNTP NEB N0447

Critical commercial assays

FastGene PCR/Gel Extraction Kit Nippon Genetics FG-91302

Deposited data

Slide-seq positions Rodriques et al.20 Single Cell Portal: https://singlecell.broadinstitute.org/

single_cell/study/SCP354/slide-

seq-study

Raw amplicon sequencing data

for estimating barcode overlap

This study NCBI BioProject: PRJNA 993711

Oligonucleotides

SI#1275 PS1.0-PAMlib-180720-FW

TAACTTACGGAGTCGCTCTACGGC

CTGCAGGTCGACTCTAGAGGA

This study N/A

SI#1274 PS2.0-PAMlib-180720-RV

GGATGGGATTCTTTAGGTCCTGG

TTGTAAAACGACGGCCAGTGAA

This study N/A

Recombinant DNA

Barcoded plasmid library Nishimasu et al.91 N/A

Software and algorithms

Samtools v.1.9.74-gf69e678 Genome Research Limited http://www.htslib.org/

Seqkit v0.10.1 Shen et al.92 https://bioinf.shenwei.me/seqkit/

download/

NCBI Blast+ v.2.6.0 NIH National Laboratory of Medicine https://ftp.ncbi.nlm.nih.gov/blast/

executables/blast+/LATEST/

INTERSTELLAR v.1.0.0 Kijima et al.93 https://github.com/yachielab/Interstellar

CellRanger v3.0.1 10x Genomics https://support.10xgenomics.com/

single-cell-gene-expression/software/

downloads/latest

R v. 4.1.1 R Project https://cran.r-project.org/

Python v.3.6.10 Python Software Foundation https://www.python.org/downloads/

UMAP v.0.4.2 Anaconda Org https://anaconda.org/conda-forge/umap-learn

Other

Illumina HiSeq 2000 sequencer Illumina N/A

PhiX Control v3 Illumina FC-110-3001

Simulation codes and resources This manuscript GitHub: https://github.com/

schiebingerlab/DNA-GPS

(version of record deposited at Zenodo:

https://doi.org/10.5281/zenodo.8088532)
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Geoffrey Schiebinger

(geoff@math.ubc.ca).
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Materials Availability
This study did not generate new materials.

Data and code availability
d Sequencing data for the barcode count distribution has been deposited to NCBI BioProject (NCBI BioProject: PRJNA993711).

d This paper analyzes existing, publicly available data. The access links to the datasets are listed in the key resources table.

d All original code has been deposited at https://github.com/schiebingerlab/DNA-GPS and is publicly available as of the date of

publication. DOIs are listed in the key resources table.

d Barcode distribution data is available at https://github.com/schiebingerlab/DNA-GPS/data.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contacts upon request.
METHOD DETAILS

Data generation
To generate data, we chose ground truth positions for beads and randomly generated satellite positions extending slightly beyond

the beads to ensure uniform reads. We used ground truth positions from the Slide-seq kidney, hippocampus, and cerebellum 2 data-

sets as well as dense grids of 100,000 beads to test scalability. For most simulations, we modelled the reads from each satellite as

following a Gaussian distribution where the width of the Gaussian determined the level of diffusion (See also Method S1). However,

we also performed simulations exploring non-Gaussian diffusion from simulated bacterial colonies (See Robustness to alternate

diffusion schemes). In addition to sBC diffusion, the density of satellite devices was a hyperparameter for data generation.

Bead quality and barcode overlap
To sample an sBC readmatrix,C, we needed to define the distributions of satellite barcode redundancy and bead quality. To account

for varying bead qualities, we utilized the distribution present in the Slide-seq kidney dataset (See Figure S2B). Slide-seq datasets

were downloaded from Single Cell Portal. cDNA sequences were extracted from the BAM file and stored as FASTQ format using

samtools.94 The reads were converted into 10x Chromium V3 format using INTERSTELLAR v1.0.0,93 and the formatted FASTQ

file was downsampled using seqkit.92 Each downsampled file was mapped to the reference genome version of mm10 using

CellRanger v3.0.1 to obtain a UMI count matrix. This resulted in the mean rpb to UMI curves shown in Figure S2. We found that

the read to UMI curve differed between different Slide-seq samples. As our model depends on UMI while sequencing cost depends

on reads, we provide both values in our results.

Barcodes do not occur uniformly in practice leading to some satellites sharing common barcodes. We quantified the extent of this

overlap by conducting the following experiment. We used a barcoded plasmid library that has been previously generated.91 To

generate the high-throughput sequencing library, the plasmid pUC19 encoding eight randomized nucleotides (48 possible barcode

combinations) was subjected to PCR amplification. The 1st PCR was performed with 20 mL reaction volume, composed of 1 mL of

plasmid library, 0.5 mL each of 20 mM forward (SI#1275) and 20 mM reverse (SI#1274) primers, 0.2 mL of Phusion High-fidelity DNA

Polymerase (NEB M0530), 4 mL of 5x Phusion HF Buffer (NEB #B0518S), and 2 mL of 2 mM dNTPs (NEB #N0447) with the following

thermal cycle condition: 98�C for 30 s, 30 cycles of 98�C for 10 s, 60�C for 10 s, and 72�C for 60 s, and then 72�C for 5 min for the final

extension. The 1st PCR product was then purified using FastGene PCR/Gel Extraction Kit (Nippon Genetics #FG-91302). For index

PCR to attach Illumina P5 and P7 index sequences, the 2nd PCR was performed with 20 mL reaction volume, composed of 1 mL of

plasmid library, 1 mL each of 10 mM P5 and 10 mM P7 primers, 0.2 mL of Phusion High-fidelity DNA Polymerase (NEB M0530), 4 mL of

5x Phusion HF Buffer (NEB #B0518S), and 2 mL of 2 mM dNTPs (NEB #N0447) with the following thermal cycle condition: 98�C for 30

s, 15 cycles of 98�C for 10 s, 60�C for 10 s, and 72�C for 60 s, and then 72�C for 5min for the final extension. The 2nd PCRproduct was

then purified using FastGene PCR/Gel Extraction Kit (Nippon Genetics #FG-91302) and pooled. The pooled sequencing sample was

quantified using a KAPA Library Quantification Kit Illumina (KAPA BIOSYSTEMS #KK4824) and analyzed by paired-end sequencing

using Illumina HiSeq2000 with 20% PhiX spike-in control (Illumina #FC-110-3001). The sequencing reads were demultiplexed

according to the sample indices and constant sequences using NCBI Blast+ (version 2.6.0)95 with the blast-short option. Using

read alignment information, 8-mer barcodes were extracted to count each barcode abundance. The resulting barcode occurrence

distribution is shown in Figure S2C. We sampled satellite barcodes from this distribution for our simulations.

Forming the sBC count matrix
To create the sBC count matrix, we first form a matrix with no barcode redundancy where for each bead we sample a bead quality

from the Slide-seq kidney distribution and then sample the specified number of reads from the sBC distribution determined by the

bead’s position. We then generate a barcode for each satellite, following the experimental distribution, and combine columns of the

initial matrix sharing a barcode. Our data generation process has three hyperparameters: (1) density of satellites, (2) diffusion level,

and (3) sequencing depth. We tested a grid of four satellite densities, sBCs/cm2 ˛ [25000, 50000, 100000, 250000], six diffusion

levels, s ˛ [10, 20, 25, 30, 50, 75, 100] mm, and 11 downsampling levels, mean rpb ˛ [10, 30, 50, 70, 90, 140, 280, 555, 1100,

2225, 4445].
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Reconstructions
UMAP is a dimensionality reduction technique that is frequently used with single-cell data to reduce a gene expression matrix to two

dimensions for visualization. However, by applying it to our sBC matrix we can recover the underlying two-dimensional manifold. As

UMAP allows an arbitrary distance function, we tested Euclidean distance and cosine similarity on raw counts, row-normalized, and

log-tpm normalized data and found the row-normalized Euclidean distance resulted in the best reconstructions.

Hyperparameter selection
UMAP introduces two hyperparameters: (1) the number of neighbors to consider for each bead, n_neighbors, and (2) the minimum

distance between points in the low-dimensional space,min_dist. We tested a grid of four values for each hyperparameter,min_dist˛
[0.25, 0.5, 0.75, 1] and n_neighbors ˛ [25, 50, 75, 100], for every combination of hyperparameters from our data simulation. As we

consistently achieved good reconstructions using 60 neighbors, we fixed n_neighbors to 60 for the figures and values reported in the

text. We found the best value of min_dist to vary with diffusion level and sequencing depth, with a value of 0.25 performing best for

30 mm diffusion and a value of 1 performing better for diffusionR50 mm. Setting these two value formin_dist based only on diffusion,

we achieved reconstructions are within 5 mm of best reconstruction in more than 80% of cases (See Figure S6).

Aligning reconstructions
As distances passed to UMAP are relative, the embeddingmay be a rotation, reflection, scaling, or translation of the ground truth.We

aligned each embedding to the ground truth using the Kabsch-Umeyama algorithm,96 which finds the rigid transformation (rotation,

reflection, scaling, and translation) that minimizes the sum of distances between corresponding points in the embedding and the

ground truth.

Robustness to physical parameters
We achievedmean alignment distances as low as 10 mm and could achieve 20 mm alignment distances for all but one combination of

sBC density and diffusion level from 30-100 mm (see Figure S4). In these ranges, physical parameters do not limit whether a recon-

struction is possible. Rather, some combinations result in higher resolution reconstructions for the same sequencing cost. While we

achieved successful reconstructions down to 20 mmof diffusion, they had high alignment errors even at the highest sequencing depth

(see Figure S7). We did not achieve successful reconstructions for diffusion below 20 mm. As preliminary experiments had already

generated �20,000 bacterial colonies/cm2, we did not test lower sBC densities.

While the median alignment distance is a convenient statistic to compare between reconstructions, it is also important that there

are not large number of outliers with high alignment distances, corresponding to beads that cannot be accurately placed. Figure S5

shows that in most cases >90% of beads are no more than twice the median alignment distance.

Robustness to bead quality
We repeated the simulations assuming uniform bead quality. As expected, the reconstructions improved compared to the experi-

mental bead quality distribution. However, the improvements were moderate, with the best reconstruction only improving from 10

to 7 mmand the best alignment error per UMI curves closely tracking (see Figure S9A). This suggests themethod is robust to changes

in the distribution of bead qualities. Further, we believe the experimentally obtained bead quality distribution is a conservative

estimate of what could be achieved in practice. For example, the 10x protocol achieves a less extreme distribution than Slide-

seq and Drop-seq which employ similar library preparation protocols (See Figure S9B).

Robustness to alternate diffusion schemes
As one potential implementation of satellite devices is through E. coli colonies, we wanted to understand the potential impact of non-

uniform diffusion from non-point source satellite devices on reconstruction quality. To simulate bacterial colonies, we generated a

10 mmgrid and randomly assigned a subset of pixels barcodes from the experimental barcode distribution, where the size of the sub-

set determined the satellite device density and was a hyperparameter for the simulation. We then simulated the colonies by defining

the probability of each pixel spreading to an adjacent empty pixel at a single step, and then repeatedly simulating steps until we

reached a target density of pixels with assigned barcodes. We simulated Gaussian diffusion from each point in the final grid, resulting

in irregular diffusion patterns due to the irregular colony shapes. For our simulations, we used a final density of 90%, so 10% of an-

chors relied solely on diffusion to receive sBC reads (See Figure S8A). As a colony must consist of multiple E. coli cells and colonies

cannot overlap, we tested lower sBC densities of 5000, 10000, 20000, and 30000 sBCs/cm2. For all other parameters, we tested the

same values used in the sweep with uniform Gaussian diffusion.

With such irregular colonies, DNA-GPS is able to achieve a resolution of 13 mm, only a 3 mmdegradation from the uniformGaussian

simulations and was still able to achieve under 30 mm resolution at as low as 25 UMI (50 rpb) (See Figure S8B). However, the robust-

ness to physical parameters decreased, with the method only being able to achieve 20 mm resolution at 7/16 diffusion and

sBC density parameter combinations and 30 mm resolution at 12/16 combinations, compared to 15/16 with uniform Gaussian

diffusion.
e3 Cell Systems 14, 844–859.e1–e4, October 18, 2023
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Slide-seq reconstructions
Using bead positions from the Slide-seq kidney, cerebellum 2, and hippocampus datasets we were able to achieve alignment dis-

tances as low as 15 mmand could achieve 30 mmalignment distances for all but one combination of number of satellites and diffusion

levels from 30-100 mm (See Figures S3 and S7). We believe that the reconstructions were slightly worse for the Slide-seq bead po-

sitions because only beads positioned over the tissuewere included in the dataset, leading to regionswithout beads. UMAP assumes

that sampled points are uniformly distributed, so our reconstructions perform best when beads have close to uniform density. In

practice, all beads would be sequenced leading to roughly uniform density and making these tests a conservative estimate of

reconstruction quality. Despite this limitation, the reconstructions with the Slide-seq positions were still at the low end of the

single-cell size range.
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