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SUMMARY

Recent advancements in image-based pooled CRISPR screening have facilitated the mapping of diverse
genotype-phenotype associations within mammalian cells. However, the rapid enrichment of cells based
on morphological information continues to pose a challenge, constraining the capacity for large-scale
gene perturbation screening across diverse high-content cellular phenotypes. In this study, we demonstrate
the applicability of multimodal ghost cytometry-based cell sorting, including both fluorescent and label-free
high-content phenotypes, for rapid pooled CRISPR screening within vast cell populations. Using the high-
content cell sorter operating in fluorescence mode, we successfully executed kinase-specific CRISPR
screening targeting genes influencing the nuclear translocation of RelA. Furthermore, using the multipara-
metric, label-free mode, we performed large-scale screening to identify genes involved in macrophage
polarization. Notably, the label-free platform can enrich target phenotypes without requiring invasive stain-
ing, preserving untouched cells for downstream assays and expanding the potential for screening cellular
phenotypes even when suitable markers are absent.

INTRODUCTION

CRISPR-based pooled screening offers several advantages,
including increased throughput, reduced cost, and reduced
well-to-well batch effects, over conventional array-based ap-
proaches for perturbation screening.1,2 In pooled phenotypic
screening, cells and intracellular molecules have been labeled
with fluorescent dyes, reporters, or immunofluorescent anti-
bodies. Cell phenotyping typically requires quantifying explic-
itly defined features; thus, fluorescence-based labeling pro-
vides distinct advantages owing to its high specificity and
sensitivity to the molecule of interest.3 For example, represen-

tative values such as total fluorescence are measured from
temporal signals obtained in fluorescence-activated cell sort-
ing (FACS), or more detailed features, such as molecular
localization and morphologic parameters, are evaluated from
optical microscopic images.4–9 However, when suitable
biomarkers or staining methods are unavailable, and cell phe-
notypes can only be assessed without labeling, image
analysis based on human-recognizable features can become
challenging. To address this challenge, machine learning
(ML)-based analysis of label-free high-content cell pheno-
types emerges as a promising alternative.10,11 In this study,
we present a versatile approach for large-scale pooled

MOTIVATION Pooled CRISPR screening based on image information has great potential to map complex
genotype-phenotype associations in mammalian cells. However, barriers to efficient cell enrichment based
on diverse morphological information remain, limiting large-scale gene perturbation screening across
diverse cell phenotypes. Further complications arise when appropriate biomarkers and staining techniques
are not available, making phenotypic evaluation under label-free conditions a challenge. To address these
challenges, this study aims to increase the feasibility and reach of pooled CRISPR screening by analyzing
and sorting both fluorescence and label-free high-content cell phenotypes using a machine vision-based
approach.

Cell Reports Methods 4, 100737, March 25, 2024 ª 2024 The Authors. 1
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

ll
OPEN ACCESS



CRISPR screening, including both fluorescent and label-
free high-content cell phenotypes, utilizing a cell sorter
based on fluorescence and label-free ghost cytometry (GC)
technologies.11,12

Central to GC is an ML-based direct and integrative analysis
of cellular morphological information without image recon-
struction. In GC, as depicted in Figure 1A (left), fluorescence
and stain-free high-content information from cells is compres-
sively converted into temporal signals, which we call ghost
motion imaging (GMI) waveforms. This conversion occurs as
cells pass through static structured light illumination in a mi-
crochannel, and optical interactions are measured using sin-
gle-pixel detectors. With configurations to observe the optical
interactions through different angles and paths, we simulta-
neously detect multiple different temporal GMI waveforms us-
ing multiple detectors. Specifically, fluorescence GMI (flGMI)
waveforms excited by a 488-nm laser, as well as forward
scattering GMI (fsGMI), backscattering GMI (bsGMI), diffrac-
tive GMI (dGMI), and bright-field GMI (bfGMI) waveforms
generated by a 405-nm laser, are measured as analogs to
their corresponding microscopic images (Figure 1A, left;
STAR Methods). To develop a classifier model based on a
support vector machine (SVM), we first used a training cell

sample to measure multiple GMI waveforms along with
ground truth labels created using molecular staining, including
surface markers and functional evaluations. Using this training
dataset, comprising pairs of waveforms and true labels,
we defined the target high-content phenotypes and trained
the SVM model (Figure 1A, center). After training, the clas-
sifier can predict the labels directly from the multiple
GMI waveforms using SVM-based scoring. These SVM
scores enable users to estimate sorting performance through
metrics such as the precision-recall (PR) curve and the
area under the receiver operating characteristic-area under
the curve (ROC-AUC) score before conducting any sorting ex-
periments (Figure 1A, right; STAR Methods). During cell
sorting, the trained classifier was implemented on a field-
programmable gate array (FPGA), which can judge cells in
real time using only the generated GMI waveforms, facili-
tating subsequent cell sorting based on this assessment.
This direct analysis of GMI waveforms, devoid of computa-
tionally intensive image reconstruction, enhances the speed
and accuracy of high-content cell sorting during large-scale
screening.
Figure 1B illustrates the workflow of CRISPR-based pooled

screening employing the trained classifier in the GC. Initially,
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Figure 1. The ghost cytometry (GC)-based cell sorter employs multimodal GC enabled for fast-pooled CRISPR screening of high-content
fluorescent and label-free cell phenotypes
(A) Schematic illustration of the simultaneous acquisition of various cellular morphological and structural information as different ghost motion imaging (GMI)

waveforms, such as flGMI, fsGMI, bsGMI, dGMI, and bfGMI, for each cell. These datasets are used to develop machine learning (ML)-based classifiers for high-

content cellular phenotypes. GMI waveforms are analogs to microscopic images, enabling subcellular-resolution cell phenotyping.

(B) The workflow of pooled high-content CRISPR screening by the GC-based cell sorter. A gene knockout cell library prepared by using the CRISPR-Cas9 system

is treatedwith compounds or reagents to induce phenotypic changes. TheGC-based cell sorter, equipped with a pre-trainedMLmodel, selectively enriches cells

displaying the target high-content phenotype for downstream analysis. For gene analysis, the sgRNA regions within the isolated genomic DNAs are amplified and

sequenced to identify enriched or depleted genes in response to the treatment.When live cells are used, transcriptomic analysis and cell-based functional assays

are widely applicable.
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cells expressing the Cas9 protein were transduced with
pooled CRISPR lentiviral libraries for loss-of-function gene
sets and selected for stable viral integration. Subsequently,
the pooled knockout cell library was treated with compounds
or reagents, manifesting diverse phenotypes. Additional as-
says, such as immunostaining, could be conducted if neces-
sary. In the GC-based cell sorter, a pre-trained ML model
was then applied to selectively enrich cells exhibiting the
desired high-content phenotypes. Finally, the sorted cells
can be subject to various biological assays, including gene
analyses such as genome sequencing, protein assays, and
cell-based functional analyses. In the case of standard
CRISPR perturbation screening, genomic DNA is extracted
from sorted cells, and regions of single guide RNAs (sgRNAs)
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Figure 2. High-content cell phenotypes
distinguishable by fluorescence GC
(A–P) Fluorescence GC effectively distinguishes

(A)–(D) nuclear translocation of RelA proteins in

THP-1 cell suspension, (E)–(H) lysosomes (Lamp1)

and mitochondria (COX III) in adherent HEK293

cells, (I)–(L) autophagosome translocation of LC3-

GFP proteins in adherent HeLa cells, and (M)–(P)

mitochondrial morphological changes in activated

and non-activated human primary T cells.

(A), (E), (I), and (M) Representative cell images ob-

tained using Amnis Image Stream. Scale bars,

10 mm.

(B), (F), (J), and (N) Conventional FACS scatterplots

depicting the fluorescence intensity of labeling for

cellular phenotyping versus that of a ground-truth

marker.

(B) Fluorescence intensity of Alexa 488-labeled RelA

versus that of fixable far-red dye, which exclusively

labeled LPS-unstimulated cells as the ground truth.

(F) Fluorescence intensity of Alexa 488-labeled

Lamp1 (lysosome) and COX III (mitochondria) pro-

teins versus that of fixable far-red dye, which

labeled only cells with Lamp1 proteins stained as

ground truth.

(J) Fluorescence intensity of LC3-GFP proteins

versus that of fixable far-red dye, which labeled only

untreated cells as ground truth.

(N) Fluorescence intensity of MitoTracker Green

versus that of CD25/CD69 double-positive cells as

the ground truth.

(C), (G), (K), and (O) Representative fluorescence

GMI (flGMI) waveforms of 20 randomly selected

cells for each condition.

(D), (H), (L), and (P) Classification of fluorescent cell

phenotypes. The ML-based classification perfor-

mance is displayed as histograms of SVM scores,

where red and blue colors correspond to ground-

truth labels and area under the ROC curve (AUC)

scores, respectively.

are amplified by polymerase chain reac-
tion (PCR), pooled, and read using
commercially available next-generation
sequencing (NGS) platforms to identify
genes inducing the target phenotype.
When live cells are sorted, transcriptom-

ics analyses using single-cell RNA sequencing and cell-based
functional assays are widely applicable.

RESULTS

Pooled fluorescence high-content cellular phenotyping
We first investigated the capability of GC to evaluate a wide range
of fluorescent high-content cellular phenotypes (Figure 2).
Figures 2A–2D illustrate sample images of an intracellular pheno-
type, specifically thenuclear translocationofRelAprotein inTHP-1
cells, andoutlines theprocedure fordevelopingandassessing this
classifier in theGC. To train the classifier for nuclear translocation,
a cell mixture consisting of lipopolysaccharide (LPS)-stimulated
and unstimulated THP-1 cells was prepared. These cells were
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stained with a combination of anti-RelA primary antibody and
Alexa Fluor 488-conjugated secondary antibody. Notably, only
the unstimulated cells were stained with a ground-truth marker
dye before mixing.13 Note that the total fluorescence intensity for
RelAstaining in the trainingsamplewassimilarbetweenLPS-stim-
ulated and unstimulated cells, rendering them challenging to
distinguish using conventional FACS (Figure 2B). Consequently,
an SVM-based classifier for flGMI waveforms representing
nuclear translocation phenotypes was trained, using 1,250 cells
for each ground-truth label. When applied to a test dataset
comprising 1,000 waveforms, the histogram of returned scores
exhibitedbimodal peakscoloredaccording toground-truth labels,
demonstrating robust and high performance, as indicated by an
AUC score of 0.98 (Figures 2C, 2D, and S1A–S1C). Similarly, we
assessed the capacity of GC to distinguish various high-content
fluorescencecellular phenotypes.One such instance involvesdis-
tinguishing between lysosomes and mitochondria in adherent
HEK293 cells (Figures 2E–2H and S1D–S1F). Individual cells
were immunostained with anti-Lamp-1 primary antibody for
lysosomes and anti-complex III-core1 primary antibody for mito-
chondria. Subsequently, they were stained with Alexa Fluor
488-conjugated secondary antibody, with only the anti-Lamp1-
stained cells beingadditionallymarkedwith a ground-truthmarker
dyebefore theirmixing. Inall cases, themodelsexhibitedexcellent
performance, achieving AUC scores of 0.96.

Additionally, we investigated LC3-GFP dynamics in adherent
HeLa cells in response to autophagy induction (Figures 2I–2L
and S1G–S1I). Under normal conditions, LC3 protein is evenly
distributed in the cell cytoplasm and nuclei, but during autophagy
induction, it aggregates into autophagosomes, forming distinct
foci in the cell cytoplasm.14 Treatment with 10 mM chloroquine

A B

C D

Figure 3. High-throughput pooled CRISPR
screening of fluorescent high-content pheno-
types
(A) Genes downstream of the TLR4 signaling pathway

were targeted for knockout using a small-scale library.

(B) Volcano plot visualization of statistical significance

(y axis) and magnitude of the change (x axis) before

and after cell sorting, with p values calculated using

the Mann-Whitney U test. Dashed lines represent the

cutoff for hit genes (false discovery rate [FDR] = 0.01).

(C) Fluorescent images display RelA (green) co-local-

ized with nuclei (magenta) inside MYD88, MAP3K7,

IRAK4, and TNFRSF CRISPR knockout cells and LPS

(!) and LPS (+) cells as controls. Scale bars, 10 mm.

(D) The correlation coefficient between SVM-based

prediction probabilities in GC and similarity scores

obtained using Amnis Image Streamwas 0.914. N = 3

biological replicates.

See also Table S4.

prevents autophagosome-lysosome fusion
and degradation, leading to the accumula-
tion of autophagosomes in the cell cyto-
plasm.15 To classify LC3-GFP localization,
both induced and uninduced HeLa cells ex-
pressing LC3-GFP were individually pre-
pared, and autophagosome accumulation

in the uninduced cells was stained with CellTracker DeepRed
dye asa ground-truth label. For classification, an equal concentra-
tion of each cell type was mixed, and 2,000 cells were randomly
selected (without overlap), evenly distributed between induced
and uninduced cells, and used as training data. The models
consistently achieved high performance with AUC scores of 0.96.
Furthermore, we examined whether GC could differentiate be-

tween mitochondrial morphological changes in activated and
non-activated human primary T cells, given the established
connection between T cell fate and mitochondrial dynamics.16,17

Activated and non-activated T cells were separately prepared
and stained with MitoTracker Green and the T cell activation
markers CD25 and CD69. To classify activated and non-activated
cells, each cell type was mixed at an equal concentration. CD25/
CD69 double-positive cells represented activated cells, whereas
CD25/CD69 double-negative cells represented non-activated
T cell populations. For training, 2,000 cells were randomly
selected (without overlap) with an equal number of induced and
uninduced cells. Consistently, the models demonstrated robust
performance, achieving AUC scores of 0.96 (Figures 2M–2P and
S1J–S1L). These results confirm the ability of GC to classify a
diverse range of high-content fluorescence phenotypes.

Pooled CRISPR screening of fluorescence high-content
phenotypes
Subsequently, we focused on nuclear translocation as the target
fluorescence high-content phenotype for pooled CRISPR
screening. RelA translocates to the nucleus downstream of the
Toll-like receptor 4 (TLR4) pathway upon activation by LPS stimu-
lation (Figure 3A).13 In the initial evaluation, the trained classifier in
the GC-based cell sorter was applied to a small-scale pooled cell
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library, where 60 sgRNAs, including those downstream of the
TLR4 pathway, were perturbed using the CRISPR-based system.
Specifically, 40 sgRNAs targeted 10 genes downstream of the
TLR4 signaling pathway as positive controls, whereas 20 non-
targeting sgRNAs outside of the pathway served as negative
controls (Table S1). Cells exhibiting suppressed RelA nuclear
translocationwere sortedandsubjected todeepsequencing anal-
ysis (coverage, 1,166). The results indicated an enrichment of cells
containingsgRNAsdownstreamof theTLR4pathway in the sorted
samples compared with the input (Figures S2).
Subsequently, we performed large-scale screening with 7,290

sgRNAs targeting 729 kinase genes (approximately 82.3
coverage), where we did not apply any staining as ground-truth
labeling to the cells. This comprehensive screening analyzed
6,000,000 cells and successfully sorted target cells within 2 h
(Figures S3). Analysis of the deep sequencing data revealed
that the enriched cells contained sgRNAs targeting genes,
including MAP3K7, IRAK4, IKBKB, and IKBKG, that are down-
stream of the TLR4 pathway (Figures 2B and S4). Therefore, we
demonstrated the large-scale applicability of GC-based pooled
CRISPR screening to fluorescent high-content phenotypes.
Furthermore, we assessed whether the degree of the cellular

phenotype could be quantified using fluorescent GC to the
same extent as image analysis performed with a commercial im-
age flow cytometer (Amnis Image Stream). Specifically, we
compared SVM-based analysis of GMI waveforms and nuclear
translocation scores obtained from the analysis of images
captured using the Amnis Image Stream. Specifically, we exam-
ined CRISPR knockout cell lines targeting MYD88, MAP3K7,
IRAK4, and TNFRSF individually. SVM-based prediction proba-
bilities were calculated as values ranging from 0–1 using the
trained SVM classifier (STAR Methods), and nuclear transloca-
tion scores were determined as the degree of overlap between
two images (RelA and nuclear images) using analysis software
equipped with the Amnis Image Stream.18,19 The correlation co-
efficient between these scores was notably high (R = 0.914), indi-
cating that GC-based phenotypic screening was quantitatively
comparable with that of high-contentmicroscopy image analysis
(Figures 3C, 3D, and S5).

Pooled label-free high-content cellular phenotyping
We investigated the capacity of GC to assess a range of label-
free high-content cellular phenotypes, including cell polarization,
differentiation, and exhaustion (Figure 4). Figures 4A and 4B pre-
sent microscopy images and scattering properties associated
with label-free morphological phenotypes linked to THP-1 cell
polarization fromM0 toM1macrophages. Figures 4C and 4D de-
pict the process for developing and evaluating morphological
classifiers within GC. To train a classifier, we separately pre-
pared M0 and M1 macrophages, subsequently combining
them as the training sample (Figure S6A–S6D).20 In this study,
we employed a combination of forward scatter (FSC), back scat-
ter (BSC), and label-free fsGMI and bfGMI waveforms to train
SVM-based classifiers, utilizing 1,000 cells for each ground-truth
label. Upon applying the trained model to a test dataset of 1,000
waveforms, the histogram of returned scores exhibited bimodal
peaks color coded based on validation labels, resulting in high
performance, as indicated by an AUC score of 0.89. This facili-

tated the classification of M0 and M1 macrophage high-content
phenotypes even in the absence of surface markers. While dis-
tinguishing M0 from M1 polarized macrophages appears chal-
lenging through bright-field microscopy or FACS (Figures 4A
and 4B), these results underscore the robust and accurate clas-
sification capabilities of GC.
Similarly, we evaluated the capability of classifying other label-

free high-content phenotypes, such as THP-1 monocytes and
THP-1-derived macrophages (cell differentiation) (Figures 4E–
4G and S6E–S6G) as well as exhausted (LAG3/PD-1 double-
positive) and non-exhausted (LAG3/PD-1 double-negative)
human primary T cells (Figures 4H–4J and S6H–S6J).20,21 In
each case, the models exhibited high performance with AUC
scores of 0.94 and 0.92, respectively (Figures 4G and 4J). These
results suggest that GC can classify various types of label-free
high-content phenotypes.

Pooled CRISPR screening of label-free high-content
phenotypes
We subsequently focused on morphological changes related to
polarization, specifically from inactivated macrophages (M0
macrophages) to classical pro-inflammatory macrophages (M1
macrophages), serving as the target label-free phenotype for
pooled CRISPR screening to identify associated genes. Macro-
phages are pivotal in the innate immune system, involved in crit-
ical processes such as tissue repair, inflammation, and cancer.
These cells exhibit polarization into various subtypes, each
with distinct functions, including cytokine secretion and
response to injury or pathogenic threats.22,23 Defining their bio-
logical functions using only a few surface markers is often chal-
lenging, rendering the isolation of live cell populations based on
their functions challenging. Thus, we hypothesized that macro-
phage polarization correlates with their morphology, prompting
us to assess whether our system could identify relevant genes
based on changes in label-free high-content cell morphological
information without relying on surface markers. Accordingly,
we employed the kinase CRISPR library, including various
signaling pathways associated with macrophage polarization,
particularly within the downstream pathway containing kinase
genes.24 To train a classifier in the GC, we separately prepared
M0 and M1 macrophages before merging them as the training
sample. Only M0macrophages were stained as the ground-truth
label before mixing with the M1 macrophages (Figures S6A–
S6D). Using the trained classifier and kinase library and the cells
without ground truth labeling, we conducted a large-scale
pooled CRISPR screening (approximately 68.6 coverage),
sorting cells that exhibited suppression of the M1 polari-
zation phenotype and subjecting them to deep sequencing
(Figures 4A–4D, S7, and S8).
Analyzing sgRNA enrichment after sorting revealed several

genes with the potential to induce macrophage polarization
(Figures 5A and S9; Tables S2 and S3). Notably, interferon g
(IFNg), a primary cytokine associated with M1 activation, was
prominent. JAK2, a major mediator of IFNg-induced signaling,
was among the hit genes.25 Other candidate genes linked to
macrophage polarization were also identified. For example, it
is reported that DLG2 is altered in response to inflammation
and can activate the formation of NLRP3 inflammasomes.26
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Considering the function of cellular membrane trafficking, STK16
localizes to the Golgi complex and is involved in transporting
secretory vesicles, which may indirectly contribute to cytokine
production for pro-inflammatory responses.27 The top-hit
gene, BRD2, is reportedly essential for pro-inflammatory cyto-
kine production in macrophages.20,28 Concordantly, reduced
expression of the M1 marker and secretion of pro-inflammatory
cytokines, such as IFNg and tumor necrosis factor alpha (TNF-a),
in BRD2 CRISPR knockout M1 cells validated the hypothesis
that BRD2 plays a pivotal role as a modulator of the M1 inducer
gene (Figures 5B, 5C, and S10).

Collectively, we demonstrated that large-scale GC-based
pooled CRISPR screening is applicable for label-free high-con-
tent phenotypes, which can be challenging to distinguish with
conventional image-feature-based analyses using standard
FACS and possibly even conventional microscopes.

Unsupervised representation of GMI waveforms
ML models trained within the GC framework exhibit versatility in
addressing various high-content cell phenotypes, depending on
the characteristics of the cell population and the classification
objective. In this study, we systematically trained models for

A B C D

E F

G

H I

J

Figure 4. High-content cell phenotypes distinguishable using label-free GC
(A–J) Label-free GC classified (A)–(D) THP-1-derived M0 and M1 macrophages, (E)–(G) THP-1 monocytes and THP-1-derived macrophages, and (H)–(J)

exhausted (LAG3/PD-1 double-positive) and non-exhausted (LAG3/PD-1 double-negative) human primary T cells.

(A), (E), and (H) Representative bright-field cell images on a dish were obtained using a microscope and Amnis Image Stream. Scale bars, 30 mm and 10 mm,

respectively.

(B) Conventional fluorescence-activated cell sorting (FACS) scatterplots of forward scatter (FSC) and side scatter (SSC).

(C), (F), and (I) Representative label-free GMI waveforms of 20 randomly selected cells for each condition.

(D), (G), and (J) Classification results for label-free cell phenotypes. The ML-based classification performance is displayed as histograms of SVM scores, where

red and blue colors indicate ground-truth labels and AUC scores.
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each pair of cellular phenotypes, specifically defined through
ground truth markers, thereby establishing the robust perfor-
mance of these classification models. This methodological
approach can be extended to scenarios where only one pheno-
type can be defined during the screening process. It can be
achieved by leveraging anomaly detection techniques, such as
the one-class SVM, which can be readily implemented within
the existing GC framework. However, practical situations often
arise where suitable molecular markers or staining methods
are unavailable for defining a particular cell phenotype. More-
over, the cells of interest within a pooled population may exhibit
morphological heterogeneity. In such instances, defining and
sorting the desired phenotype solely based on the GMI wave-
forms becomes imperative.
To explore the potential capabilities of GC in this context,

we employed uniform manifold approximation and projection
(UMAP) to visualize the GMI waveforms, as depicted in
Figures 2C and 4C. Dimensionality reduction through principal-
component analysis29 preceded the UMAP analysis (Figure 6).
In Figure 6A, the UMAP of flGMI waveforms, obtained from a
mixture of LPS-stimulated and unstimulated cells labeled with
fluorescently tagged RelA molecules, revealed two distinct clus-
ters. These clusters were subsequently validated as represent-
ing LPS-stimulated and unstimulated populations, respectively.
The clear separation of these clusters suggests the potential to
train classification models based on populations delineated
within the UMAP space, similar to those defined using molecular
markers.
Furthermore, Figure 6B illustrates that cells distinguished within

the UMAP space exhibit differential SVM scores, as quantified in
Figure 2D. These results indicate that the morphological differ-
ences identified through supervised learning algorithms can also
be captured via unsupervised learning algorithms, including
UMAP and other dimensionality reduction methodologies.

In Figure 6C, similar to the fluorescence scenario, we pro-
jected label-free GMI waveforms derived from a mixture of
THP-1-derived M0 andM1macrophages onto the UMAP space.
Colors were assigned based on ground-truth labels. While M0
and M1 macrophages did not present as distinct clusters within
the UMAP, Figure 6D demonstrates that their distributions corre-
latedwith the SVM scores obtained from the classificationmodel
in Figure 4D. These findings strongly suggest that GMI wave-
forms alone hold the potential to define target high-content
cellular phenotypes, provided that discernible morphological
differences exist in an unsupervised context.

DISCUSSION

An important technical advantage of CRISPR screening using
the GC-based cell sorter, compared with conventional FACS-
based screening, lies in its ability to analyze and integrate intri-
cate cellular information, leading to more precise cell selection.
In cases involving fluorescence-based cell phenotyping, this
approach has demonstrated its superiority, especially when
distinguishing between cell phenotypes, such as variations in
subcellular protein localization or alterations in organelles mor-
phologies, with similar total fluorescence intensity (Figure 2).
The advantage of utilizing high-dimensional GMI waveforms for
label-free cellular phenotyping is also evident. This is highlighted
by the fact that conventional FSCs and side scatters (SSCs) (Fig-
ure 4B) were insufficient in distinguishing the polarized state of
macrophages, evenwhen utilizing the SVMmethod (Figure S6D).
In addition, the results presented in Figure S6D show that the
combination of average characteristics from FSC and SSC,
along with detailed GMI waveforms, can synergistically enhance
classification accuracy.
We anticipate the potential benefits of combining surface

marker-based cell definition with label-free high-content cellular

A B C

Figure 5. High-throughput pooled CRISPR screening of label-free high-content phenotypes
(A) Volcano plot displaying statistical significance (y axis) and magnitude of the change (x axis) before and after cell sorting, with p values calculated using the

Mann-Whitney U test. Dashed lines represent the cutoff for hit genes (FDR = 0.01).

(B) Expression of macrophage surfacemarkers in control M0, control M1, andBRD2CRISPR knockout (KO) M1 cells, using CD11b as a pan-macrophagemarker

and CD38 as an M1-specific marker. N = 3 biological replicates.

(C) Cytokine (IFNg and TNF-a) release profiling of control M0, control M1, and BRD2 CRISPR KOM1 cells. Supernatants were collected from three independent

experiments. Data are presented as mean ± SD; Welch’s t test: *p < 0.05, ***p < 0.001. N = 3 biological replicates.

See also Table S4.
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phenotyping within the GC. This combination is particularly valu-
able for exploring subtle cell differences among immune cell
subtypes and various cell states, including activation, exhaus-
tion, and differentiation. Moreover, the unique capability of GC
to discern both fluorescent and label-free high-content cellular
phenotypes holds potential for discovering novel targets,
including gene perturbations and compounds. The fluorescence
mode proves effective, particularly when the molecules or sub-
cellular features of interest are pre-defined, enabling screening
based on changes in their spatial distribution. Examples include
the aggregation or degradation of proteins and alterations in
intracellular organelles, serving as indicators of the underlying
mechanisms of action.30,31 The label-free GMI waveforms
uniquely capture complex morphological changes as a pheno-
typic response within each entire cell. In future implementations,
simultaneous use of fluorescence and label-free GMI waveforms
holds the potential for cell-based screening through the combi-
natorial analysis of changes in fluorescently labeled target pro-
teins and detailed holistic high-content cellular phenotypes.32–34

From the viewpoint of applying ML methods in GC, we envi-
sion the following cases for supervised and unsupervised
methods, respectively. Supervised learning approaches will be
powerful when a labeled dataset is available for training classifi-
cation models. This includes instances where the presence or
absence of specific phenotypes can be defined by surface
marker expression or scenarios when separate cell preparations
with andwithout the desired phenotypes can be prepared. When
accessible, leveraging class label information in supervised
learning tends to achieve superior separation of phenotypes

compared with unsupervisedmethods. On the other hand, unsu-
pervised learning methods stand out for their potential in explor-
atory scenarios, especially in the absence of a labeled training
dataset. These include experiments where the expected pheno-
types are uncertain or when the target phenotypes cannot be
defined only by surface markers. Such situations can typically
arise in primary samples during disease progression, infection,
or differentiation processes.
Image-based pooled CRISPR screening has witnessed rapid

advancements. A noteworthy strategy involves fluorescence mi-
croscopy for both fluorescence image-based cellular phenotyp-
ing and subsequent reading of DNA barcodes assigned to each
cell.6 The use of fluorescence markers is essential to delineate
target image features and phenotypes. However, analyzing
explicitly discernible image features becomes intricate when
suitable biomarkers are unavailable, and cell phenotypes must
be evaluated without labeling. Nevertheless, optical microscopy
offers the unique advantage of characterizing cellular pheno-
types in adherent states, coupled with the potential for high-res-
olution time-lapse observations, albeit at the cost of throughput.
Another recently introduced screening method relies on

the enrichment of fluorescence image phenotypes using a
fluorescence image-activated cell sorter (ICS),7 which has
demonstrated even higher throughput than that of the current
GC-based cell sorter. In ICS, a distinct set of image features is
quantified by analyzing the reconstructed images, whereas the
GC approach analyzes GMI modalities that are beyond visual
comprehension. We acknowledge that the absence of images
during GC-based sorting may be a limitation for those who

A B

C D

Figure 6. Uniform manifold approximation and projection (UMAP) of GMI waveforms
(A) UMAP of flGMI waveforms obtained for LPS-stimulated (orange) and unstimulated (blue) THP-1 cells.

(B) The same UMAP plot as presented in (A) is colored according to SVM scores obtained in the classification of RelA flGMI waveforms for the LPS-treated cells

(stimulated versus unstimulated).

(C) UMAP of label-free GMI waveforms obtained for THP-1-derived M0 (blue) and M1 (orange) macrophages.

(D) The UMAP plot presented in (C) is colored according to SVM scores obtained in the classification of label-free multimodal GMI waveforms for the cells at

different polarization states (M0 versus M1).
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prioritize visual verification. Nonetheless, in an era where ma-
chines frequently outperform human capabilities, we believe in
the potential of utilizing modalities that are machine suitable.
We have also demonstrated that GC can perform phenotyping
quantitatively, resembling a 2D image-based analysis of image
features (Figures 3C and 3D).
Moreover, in the context of label-free cell phenotyping,

whether a limited set of image features computed from non-fluo-
rescent images can sufficiently support optimal analysis remains
uncertain. In contrast, GC classifies multimodal GMI waveforms,
which include holistic, multiparametric morphological data of
cells without requiring image reconstruction or feature extrac-
tion. Consequently, our ML-driven, less biased approach has
showcased its advantages in detecting both simple molecular
phenotypes (e.g., nuclear translocation of fluorescently labeled
RelA) and more intricate, holistic phenotypes (e.g., macrophage
polarization without labels).
Last, wediscuss the similarities and differences in the screening

results when comparedwith recent reports. In one report,7 the au-
thors used HeLa cells and stimulated them with TNF-a to induce
nuclear translocation of RelA. They performed a CRISPR screen
using their custom nuclear factor kB (NF-kB) pathway-focused li-
brary targeting 1,068 genes and obtained MAP3K7, IKBKB,
IKBKG, MAP3K7, IRAK4, IKBKB, and IKBKG, which are genes
relevant to NF-kB signaling and were also hit in our screens, as
statistically predominant hits. In another report,6 the authors
used HeLa cells and stimulated with interleukin-1b (IL-1b) and
TNF-a for induction of RelA nuclear translocation. They performed
a screen using their custom library targeting 963 genes and ob-
tained MAP3K7, IKBKB, IKBKG, MAP3K7, IRAK1, IRAK4,
IKBKB, and IKBKG, which are genes relevant to NF-kB signaling
and were also hit in our screens, as statistically predominant hits.
In this study, we used THP-1 cells and stimulated them with LPS
to induce RelA nuclear translocation. We first used a small-scale
library targeting pathways containing NF-kB signaling and ob-
tained TRAF6, MAP3K7, MYD88, IKBKB, IRAK1, IRAK4, and
TIRAP as statistically predominant hits. We then used kinase
library targeting 729 kinase genes and detected five genes,
RelA, MAP3K7, IRAK4, IKBKB, and IKBKG, as statistically pre-
dominant hits relevant to NF-kB signaling. The large-scale library
we used targeted only kinase genes and thus did not include non-
kinase genes such as MYD88, which we included in the small-
scale library. TAB1 and NFKB1A genes were hit in a report by
Feldman et al.6 but not in another by Schraivogel et al.7 or in our
screen. As the cell lines and stimulation conditions were different,
and the genes in each library were not completely the same, it is
difficult to compare the sensitivity directly. Nevertheless, many
of the hit genes overlap with the previous two reports.
Collectively, we successfully developed a high-throughput and

large-scale pooledCRISPR screeningmethod, facilitated by rapid
and selective cell sorting based onmachine vision of high-content
cellular phenotypes. We anticipate widespread utilization of GC-
based cell sorters for screening critical cellular phenotypes by
integrating various available MLmethods and existing biomarkers
with high-content analysis capabilities. When combined with sin-
gle-cell sequencing techniques,35–38 this method seamlessly
alignswith the pooled screening of various DNA-tagged perturba-
tions, including antibodies,39 compounds,40 short hairpin RNAs

(shRNAs),41 and peptides.42 Notably, as it is not confined to fluo-
rescence-based cellular phenotypes, our ML -based, label-free,
high-content cell analysis enables the enrichment of target pheno-
types without invasive staining, preserving ‘‘untouched’’ cells for
downstream functional assays, thereby expanding its applicability
across a wide spectrum of biological studies.

Limitations of the study
To perform CRISPR screening using GC-based cell sorting, it is
necessary to determine what to screen as the target positive
phenotype and train the machine classifier using training sam-
ples. The design and preparation of positive and negative pheno-
types in the step of training classifiers are the most important
tasks for successful screening of genes that induce target image
cell phenotypes.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-UQCRC1 antibody Invitrogen 459140, RRID: AB_2532227

anti-Lamp1 antibody CST 9091, RRID: AB_2687579

anti-RelA p65 antibody CST 8242, RRID: AB_10859369

Alexa Fluor 488-conjugated secondary antibody ThermoFisher A32723, RRID: AB_2633275

Alexa Fluor 488-conjugated secondary antibody ThermoFisher A11008, RRID: AB_143165

PE anti-human LAG3 (11C3C65) BioLegend 369305, RRID: AB_2629591

APC anti-human PD-1 (EH12.2H7) BioLegend 329908, RRID: AB_950475

PE-anti-human CD11b (ICRF4) BioLegend 301306, RRID: AB_314158

Alexa Fluor 488 anti-human CD38 (HIT2) BioLegend 303512, RRID: AB_493088

APC anti-human CD25 (BC96) BioLegend 302610, RRID: AB_314280

BV421 anti-human CD69 (FN50) BioLegend 310930, RRID: AB_2561909

Bacterial and virus strains

LentiBrite GFP-LC3 lentiviral biosensor MERCK 17–10193

One Shot Stbl3 Chemically Competent E. coli ThermoFisher C737303

Chemicals, peptides, and recombinant proteins

Chloroquine Sigma-Aldrich C6628-25G

Phorbol 12-myristate 13-acetate (PMA) Sigma-Aldrich P8139-1MG

LPS Sigma-Aldrich L4391-1MG

IFNg R&D Systems 300–02

rhIL-2 Pepro Tech 200-02-50ug

Critical commercial assays

Human Pro-inflammatory

Cytokine Multiplex ELISA Kit

Arigo Biolaboratories Corp ARG82862

KAPA library quantification kit Illumina platform Roche KK4824

QIAamp DNA FFPE Tissue Kit QIAGEN 56404

Gel/PCR Extraction Kit Nippon Genesis FG-91012

CellTiter-Glo Luminescent Cell Viability Assay Promega G7571

TruSeq rapid SBS kit (2 x 151 bp paired-end) Illumina FC-402-4023

MiSeq v2 kit (2 x 301 bp paired-end) Illumina MS-102-2002

Deposited data

Raw and analyzed data - Zenodo This paper https://doi.org/10.5281/zenodo.7701145,

https://doi.org/10.5281/zenodo.7703670,

https://doi.org/10.5281/zenodo.7709846

https://doi.org/10.5281/zenodo.10472989

Sequencing data This paper DDBJ submission DRA017748

Experimental models: Cell lines

HEK293T cells Applied Biological Materials T3327

HeLa cells Japanese Collection of

Research Bioresources

JCRB9004

THP-1 cells ATCC TIB-202

Recombinant DNA

pLentiGuide-Puro Addgene 52963

pLenti-Cas9-Blast Addgene 52962

pMD2.G Addgene 12259

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact
Requests for further information and resources relating to this paper should be directed to Sadao Ota (sadaota@solab.rcast.u-tokyo.
ac.jp).

Materials availability
Materials used in this study are commercially available.

Data and code availability
d All data are reported in the paper or deposited at Zenodo: https://doi.org/10.5281/zenodo.7701145, https://doi.org/10.5281/

zenodo.7703670, https://doi.org/10.5281/zenodo.7709846, https://doi.org/10.5281/zenodo.10472989.
d NGS fastq files of NFkB screening (replicate 1&2 of pilot screening, related to Figures S2A and S2K) are available in Zenodo:

https://doi.org/10.5281/zenodo.7701145.
d NGS fastq files of NFkB screening (replicate 1&2 kinase library screening, related to Figures 3B, and S4A–S4C) are available

in Zenodo: https://doi.org/10.5281/zenodo.7701145.
d NGS fastq files of macrophage label-free screening (replicate 2&3, related Figures S9D–S9G; Table S3) are available in

Zenodo: https://doi.org/10.5281/zenodo.7701145.
d Fcs files of conventional flow cytometer data (Figures 4B and 5B, S1J–S1L, S6H–S6J, and S7) are available in Zenodo:

https://doi.org/10.5281/zenodo.7701145.
d Text files of similarity score taken by Amnis image flow cytometer (Figure 3D) are available in Zenodo: https://doi.org/10.

5281/zenodo.7701145.
d NGS fastq files ofmacrophage label-free screening (replicate 1, related to Figure 5A) are available in Zenodo: https://doi.org/

10.5281/zenodo.7703670.
d Csv files of ML classifier training and test data (NFkB nuclear translocation, related to Figures 2D and 6) are available in

Zenodo: https://doi.org/10.5281/zenodo.7709846.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

psPAX2 Addgene 12260

Software and algorithms

Python scripts This paper https://doi.org/10.5281/zenodo.10472989

FlowJo BD Biosciences Version 10.9.0

IDEAS Luminex Version 6.2

python python.org 3.7.12

scikit-learn scikit-learn.org 1.0.2

pandas pandas.pydata.org 1.3.5

numpy numpy.org 1.21.6

optuna optuna.org 2.10.1

matplotlib matplotlib.org 3.5.3

GCApp ThinkCyte v1.2.9.82

Other

Dulbecco’s Modified Eagle’s Medium (DMEM) FUJIFILM Wako 044–29765

RPMI-1640 FUJIFILM Wako 189–02025

X-VIVO 15 Lonza BEBP04-744Q

Penicillin-streptomycin solution FUJIFILM Wako 168–23191

Fetal bovine serum (FBS) HyClone SH30396.03

0.25w/v% Trypsin-1mmol/L EDTA･4Na
Solution with Phenol Red

FUJIFILM Wako 209–16941

Earle’s Balanced Salt Solution (EBSS) ThermoFisher 14155063

StemSure 2-mercaptoethanol solution FUJIFILM Wako 198–15781

Glutamax supplement ThermoFisher 35050061

CD3/CD28 Dynabeads ThermoFisher 11132D
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d Csv files of ML classifier training and test data (mitochondria/lysosome, related to Figure 2H) are available in Zenodo:
https://doi.org/10.5281/zenodo.7709846.

d Csv files ofML classifier training and test data (LC3 aggregation, related to Figure 2L) are available in Zenodo: https://doi.org/
10.5281/zenodo.7709846.

d Csv files of ML classifier training and test data (T cell mitochondria, related to Figure 2P) are available in Zenodo: https://doi.
org/10.5281/zenodo.7709846.

d Csv files of ML classifier training and test data (MacrophageM0/M1, related to Figure 4D) are available in Zenodo https://doi.
org/10.5281/zenodo.7709846.

d Csv files of ML classifier training and test data (monocyte/macrophage, related to Figure 4G) are available in Zenodo:
https://doi.org/10.5281/zenodo.7709846.

d Csv files of ML classifier training and test data (T cell exhaustion, related to Figure 4J) are available in Zeonodo: https://doi.
org/10.5281/zenodo.7709846.

d Text files of SVM-based prediction probabilities in GC (Figures 3D and S5) are available in Zenodo: https://doi.org/10.5281/
zenodo.7709846.

d NGS sequencing raw data (fastq files) were also deposited at DNA DataBank of Japan (DDBJ)
d Submission: DDBJ: DRA017748 (sadaotalab1-0001_Submission)
d BioProject: DDBJ: PRJDB17362 (PSUB022209)
d BioSample: DDBJ: SAMD00732055-SAMD00732060 (SSUB028198)
d Experiment: DDBJ: DRX509723-DRX509728 (sadaotalab1-0001_Experiment_0001–0024)
d Run: DDBJ: DRR525841-DRR525847 (sadaotalab1-0001_Run_0001–0020)

d Data analysis was performed using code written in Python, which is available in Zenodo. To analyze the data, csv files are
imported and run Python code.
d Python code file (svm.py) for ML classification and drawing confusion matrix, SVM histogram, and PR curve, and calculation

of probabilities from SVM score (Figures 3D, S1L, and S6J) is available in Zenodo: https://doi.org/10.5281/zenodo.
10472989.

d Python code file (umap_plot.py) for UMAP plot (Figure 6) is available in Zenodo: https://doi.org/10.5281/zenodo.10472989.
d Instruction file (how_to_use.txt) is also available in Zenodo: https://doi.org/10.5281/zenodo.10472989.

d Any additional information needed to re-analyze the data reported in this paper are available from the lead contact upon
request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell culture
HEK293T cells (gender: female) were purchased fromApplied Biological Materials (abm) and cultured in Dulbecco’sModified Eagle’s
Medium (DMEM) (FUJIFILMWako), supplemented with 10% fetal bovine serum (FBS) (HyClone) and 1% penicillin-streptomycin so-
lution (FUJIFILMWako) at 37"Cwith 5%CO2. Routine testing for mycoplasma contamination was conducted using nested PCRwith
culture medium as the template.

HeLa cells were obtained from the Japanese Collection of Research Bioresources (JCRB) Cell Bank and cultured in DMEM
(FUJIFILM Wako), supplemented with 10% FBS (HyClone) and 1% penicillin-streptomycin solution (FUJIFILM Wako) at 37"C with
5% CO2.

HeLa cells (gender: female) expressing LC3-GFP were transduced by adding LentiBrite GFP-LC3 Lentiviral Biosensor (Millipore) at
a multiplicity of infection (MOI) of 20 for 24 h, following themanufacturer’s instructions. After 48 h post-infection, cells were passaged
into complete culture medium. Routine testing for mycoplasma contamination was conducted using nested PCR with culture me-
dium as the template. Cells were either maintained in complete media or incubated for 4 h in Earle’s Balanced Salt Solution
(EBSS) (ThermoFisher) containing 20 mM chloroquine (Sigma-Aldrich) to induce autophagosome accumulation.

THP-1 human monocytic leukemia cells (gender: male) were obtained from ATCC and cultured in RPMI-1640 (FUJIFILM Wako),
supplemented with 10% FBS (HyClone), 1% penicillin-streptomycin (FUJIFILM Wako), and 1% StemSure 2-mercaptoethanol solu-
tion (FUJIFILM Wako) at 37"C with 5% CO2. Routine testing for mycoplasma contamination was conducted using nested PCR with
culture medium as the template. To activate TLR4 signaling, THP-1 cells were stimulated with lipopolysaccharide (LPS) (Sigma-
Aldrich) at a concentration of 300 ng/mL for 1 h at 37"C with 5% CO2. For macrophage differentiation and polarization from
THP-1 cells, THP-1 monocytes were differentiated into resting macrophages (M0) using 100 nM phorbol 12-myristate 13-acetate
(PMA) (Sigma-Aldrich) for 72 h, followed by 24 h in PMA-free medium. For M1 polarization, M0 macrophages were further cultured
in M1-polarization medium containing 100 ng/mL LPS (Sigma-Aldrich) and 20 ng/mL IFNg (R&D Systems) for 24 h, starting on the
third day of PMA treatment [20].

For primary T cells, Pan-T cells were acquired from Precision for Medicine and cultured in X-VIVO 15 (Lonza), supplemented with
10% FBS (HyClone), 1% Glutamax supplement (Thermo Fisher), 1% penicillin-streptomycin (FUJIFILM Wako), and 1% StemSure
2-mercaptoethanol solution (FUJIFILM Wako) at 37"C with 5% CO2. For activation, Pan-T cells were cultured in the presence of
CD3/CD28 Dynabeads (Thermo Fisher) and 25 U/mL rhIL-2 (Pepro Tech) for 4 days. For non-activated cells, Pan-T cells were
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cultured with only 25 U/mL rhIL-2 for 4 days. To mimic transient stimulation for the T cell exhaustion experiment, cells were cultured
with CD3/CD28 Dynabeads and 25 U/mL rhIL-2 for 3 days, followed by incubation in the presence of only rhIL-2 for the remaining
11 days of culture [21].

METHOD DETAILS

Ghost cytometry (GC)-based cell sorter
In the optical setup of the GC-based cell sorter prototype, diffractive optical elements (DOEs) are employed to generate structured
illumination of light for acquiring ghost motion imaging (GMI) waveforms. The structured light pattern generated using a 488 laser is
utilized to measure fluorescence GMI (flGMI) waveforms, whereas that produced using a 405 laser is employed for measuring label-
freeGMI (fsGMI, bsGMI, dGMI, and bfGMI) waveforms. In the fluidic setup, a sample volume is controlled using a syringe pump, and a
sheath flow is driven by a pressure pump. Within the microfluidic device, cells are initially hydrodynamically focused to form a
tight stream. Subsequently, they undergo structured illumination by light and are then sorted using a piezo-based microfluidic
sorting device, based on the analysis using a support vector machine (SVM) model implemented i.n a field programmable gate array
(FPGA), similar to a method reported previously.12 During large-scale CRISPR screenings, cells flowed at an input rate of approxi-
mately 1,000 cells/s. This prototype allowed us to flow cells, whose size ranged from 4 to 40 mm, at a flow rate up to 40 mL/min,
at a maximum rate of 3,000 events/s, with an optical resolution of approximately 0.7 mm, which was estimated by the single spot
size of the structured illumination. The updated information on machines is available on Thinkcyte.43

Construction of small-scale CRISPR sgRNA expression plasmids
gRNA spacer inserts were prepared through a single-pot reaction to phosphorylate and anneal ssDNA pairs. To generate each
spacer fragment (see Table S1), a T4 polynucleotide kinase reaction sample was prepared with two ssDNAs in accordance with
the manufacturer’s protocol (Takara) and subjected to the following thermal cycling conditions: 37"C for 30 min; 95"C for 5 min;
70 cycles of 12 s starting at 95"C and decreasing by 1"C per cycle, followed by incubation at 25"C. The annealed spacer inserts
were subsequently ligated into a pLentiGuide-Puro vector (Addgene) via Golden Gate Assembly using BsmBI (NEB) and T4 DNA
ligase (NEB). The assembly process followed these thermal cycling conditions: 15 cycles of 37"C for 5 min and 20"C for 5 min,
55"C for 30 min, and then maintenance at 4"C.44 pLenti-Cas9-Blast plasmids were obtained from Addgene. Plasmid sequences
were validated using Sanger sequencing.

Amplicon sequencing
Genomic DNA from fixed cells was extracted using the QIAamp DNA FFPE Tissue Kit (QIAGEN) or the hotshot method.37 For each
sample, target regions were amplified using the extracted genomic DNA as the PCR template with the corresponding first HTS primer
pair (see Table S1). The PCR was conducted following the previously established protocol [43]. The PCR product was purified using
the FastGene Gel/PCR Extraction Kit (Nippon Genetics) and re-amplified with custom Illumina index primers (see Table S1). Each
indexed library was electrophoresed in a 2% agarose gel, and the expected band was purified using the FastGene Gel/PCR Extrac-
tion Kit (Nippon Genetics). The sequencing libraries were quantified using qPCR with the KAPA Library Quantification Kit Illumina
(KAPA Biosystems) for multiplexing. The multiplexed libraries were quantified using the same qPCR protocol and sequenced with
30–40% PhiX control using Illumina HiSeq2500 (HiSeq Rapid SBS kit; 2 x 151 bp paired-end) or MiSeq (MiSeq v2 kit; 2 x 301 bp
paired-end).

Lentiviral production and transduction
HEK293T cells were seeded onto a 10-cm plate at a density of 100,000 cells/cm2. After 20 h, cells were transfected with pMD2.G
(0.75 mg) (Addgene), psPAX2 (2.25 mg) (Addgene), and a lentiviral transfer plasmid (3.6 mg) using polyethylenimine (PEI) MAX
(Cosmobio).44 The media was changed after 24 h. Viral supernatant was harvested 48 h post-transfection and filtered through
0.45 mm cellulose acetate filters. Virus titer was determined using CellTiter-Glo (Promega), following the manufacturer’s protocol.
THP-1 cells expressing Cas9 protein were transduced in bulk with the library at a low MOI (0.15 viral particles per cell) by adding viral
supernatant supplemented with polybrene (8 mg/mL) and centrifuging at 510 g for 1 h at 37"C. After 24 h post-infection, cells were
passaged into media containing selection antibiotics, 0.5 mg/mL puromycin (Sigma-Aldrich) and 10 mg/mL blasticidin (Sigma-Aldrich).

Immunostaining
HEK293T cells were washed once with PBS and treated with 0.25 w/v% Trypsin-EDTA solution (FUJIFILMWako) for 5min at 37"C to
detach them from the culture dish. Cells were fixed with 4% formaldehyde in PBS (Thermo Fisher) for 20min at room temperature. To
visualize mitochondria, cells in PBS were incubated at 95"C for 5 min, blocked with 5% FBS and 0.3% Triton X-100 (Sigma-Aldrich,
#T8787-100mL) in PBS solution for 30min at room temperature, and incubated with a 1/200 diluted anti-UQCRC1 antibody for Com-
plex III-core1 (Invitrogen, #459140) in the blocking buffer overnight at 4"C. After washing with wash buffer (0.5% FBS in PBS), cells
were incubated with Alexa Fluor 488-conjugated secondary antibody (Thermo Fisher, #A32723) for 1 h at room temperature. To
visualize lysosomes, cells were permeabilized with 0.2% Triton X-100 in PBS for 3 min at room temperature after fixation. After
washing with 0.5% BSA in PBS, cells were blocked with 5% BSA in PBS for 1 h at room temperature and incubated with a 1/200
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diluted anti-Lamp1 antibody (CST, #9091) in 1% BSA in PBS overnight at 4"C. After washing with 0.5% BSA in PBS, cells were incu-
bated with Alexa Fluor 488-conjugated secondary antibody (Thermo Fisher, #A11008) for 1 h at room temperature.

THP-1 cells were fixedwith 4% formaldehyde in PBS (Thermo Fisher, #R37814) for 20min at room temperature. After washing with
PBS once, cells were incubated with ice-cold methanol for 5 min at!20"C. After washing with 0.5% BSA in PBS, cells were blocked
with 5%BSA in PBS for 1 h at room temperature and incubatedwith anti-RelA p65 antibody (CST, #8242) in 1%BSA in PBS overnight
at 4"C. After washing with 0.5% BSA in PBS, cells were incubated with Alexa Fluor 488-conjugated secondary antibody (Thermo
Fisher, #A11008) for 1 h at room temperature.

Flow cytometry
For flow cytometry and ghost cytometry, the followingmonoclonal antibodies were employed: PE anti-human LAG3 (11C3C65), APC
anti-human PD-1 (EH12.2H7), PE anti-human CD11b (ICRF4), Alexa Fluor 488 anti-human CD38 (HIT2), APC anti-human CD25
(BC96), and BV421 anti-human CD69 (FN50), along with their corresponding isotype controls (all from BioLegend). Cell viability
was assessed using 7-AAD (BD Biosciences) or Zombie NIR staining (BioLegend). Nuclear staining was performed using Hoechst
33342 (Thermo Fisher, #H3570). Cells were suspended in a staining buffer (2% FSB with 1 mM EDTA in PBS) containing human
FcR blocking reagent (Miltenyi Biotec, #130-059-901) and incubated with monoclonal antibodies for 30 min at 4"C. Flow cytometry
data were acquired using the Attune Flow Cytometer (Thermo Fisher) or JSAN (Bay Bioscience). Fluorescence was compared to cor-
responding isotype-stained controls. FlowJo software (Tree Star Inc.) was used for data analysis. Cell images in Amnis Image Stream
were captured using the FlowSight system, and black or gray areas were added to the surroundings to ensure uniformly sized images
for improved visualization in figures. Similarity scores for RelA and Hoechst were obtained using IDEAS 6.2 (Luminex).

ELISA
THP-1 cells were polarized as described earlier. The supernatant was collected from three independent experiments, pooled, and
subjected to the Human Pro-inflammatory Cytokine Multiplex ELISA Kit (Arigo Biolaboratories Corp) following the manufacturer’s
protocol. Optical density (OD) was read with a microplate reader (Speark, Tecan) at 450 nm, and average absorbance values
were calculated for each set of standards and samples. The experiments were performed as three independent replicates.

Experimental conditions for fluorescence and label-free GC
Electronic settings were detailed previously.11,12 Briefly, all photomultiplier tubes (PMTs) were purchased from Hamamatsu
Photonics Inc. PMTs with a frequency of 10 MHz and built-in amplifiers were used for detecting the flGMI, fsGMI, bsGMI, and
dGMI, whereas PMTs with frequencies of 200 kHz, 1 MHz, or 10 MHz detected fluorescence and BSC signals. FSC signals were
obtained using either a photodetector or a 200 kHz PMT. Multi-pixel photon counters from Hamamatsu Photonics Inc. were used
for detecting bfGMI. DC signals for flGMI, fsGMI, bsGMI, bfGMI, dGMI, and FSC were filtered using an electronic high-pass filter.
PMT signals were recorded with electronic filters using a digitizer or an FPGA development board with a custom analog-to-digital
converter. The digitizer and/or FPGA continually collected fixed-length signal segments from each color channel simultaneously,
with a fixed trigger condition applied to the FSC signals.

Cells were passed through either a quartz flow cell (Hamamatsu) or a polydimethylsiloxane (PDMS)-based microfluidic device
using a custom pressure pump and/or syringe pump (KD Scientific). The quartz flow cell had a channel cross-section dimension
of 150 3 150 mm2 at the measurement position, with the sheath fluid (IsoFlow, Beckman Coulter) driven at a pressure of 305 kPa
for cell analysis. The sample fluid was driven at a flow rate between 10 and 40 mL/min. For cell sorting, custom handmade sorting
chips were used. The PDMS device had a channel with a cross-section dimension of 32 3 80 mm2 at the measurement position.
The sheath flow was driven at a pressure of about 180–270 kPa, and the sample fluid was driven at a flow rate of 20 mm/min during
cell sorting. For sorting, a piezoelectric (PZT) actuator implemented on the sorting chip was driven by an input voltage, displacing the
fluid containing target cells toward a collection channel.

Machine learning details were described previously.11,12 For binary cell classification, a support vector machine (SVM) algorithm
with a radial basis function (rbf) kernel from the scikit-learn library was used. All model training and validations were performed using
equal sample amounts for each class label. We avoided the leakage interference of the signals from ground truth markers with
the imaging signal by carefully choosing dyes and designing the configrations of optical illuminations. The number of cells for training
and testing SVM is described in subsequent sections. After training, probability or decision functions were computed using the
predict_proba method or the decision_function method from the scikit-learn library, serving as SVM scores. Score distributions
for each sample were visualized as histograms using the matplotlib library. We evaluated trained machine learning models using
accuracy, receiver operating characteristic (ROC) curves, and area under the ROC curve (AUC or ROC-AUC). ROC curves were
plotted using the matplotlib library after calculating the true positive rate (tpr) and false positive rate (fpr) with the scikit-learn library.
Precision-recall pairs for different SVM score thresholds were computed with the scikit-learn library, and precision-recall (PR) curves
were plotted using the matplotlib library. Hyperparameters (regularization and kernel parameters in SVM) were optimized through
3-fold cross-validation of the AUC score.
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Classification of lysosomes and mitochondria
HEK293T cells were immunostained with anti-Lamp1 and anti-UQCRC1 antibodies as described above. As a ground truth label, anti-
Lamp1 antibody-stained cells were incubated with the LIVE/DEAD Fixable Far-Red (FFR) Dead Cell staining kit (Thermo Fisher
Scientific). To classify the lysosomal and mitochondrial organelle fluorescence distribution patterns, each cell type was mixed at
an equal concentration. The mixed suspension was allowed to flow through the fluorescence GC system. Cells were gated using
FSC/SSC scatterplots to remove doublets and debris from the training samples. flGMI waveforms were used as the classification
modality. Within the data, 2,500 and 1,000 cells were randomly selected (without overlap), with an equal number of anti-Lamp1-
and anti-UQCRC1-stained cells used as training and testing data, respectively.

CLASSIFICATION OF AUTOPHAGOSOME LOCALIZATION OF LC3-GFP PROTEINS IN HeLa CELLS

Autophagosome-induced and -uninduced HeLa cells expressing LC3-GFP proteins were prepared individually, as described earlier.
After washing once with PBS, cells were incubated with 0.25 w/v% Trypsin-EDTA solution for 5 min at 37"C to detach them gently
from the culture dish. As a ground truth label, the accumulation of autophagosome-uninduced cells was stained with CellTracker
DeepRed Dye (Thermo Fisher Scientific). To classify LC3-GFP autophagosome localization, each cell line was mixed at equal con-
centrations. The mixed suspension was allowed to flow through the fluorescence GC system. Cells were gated using FSC/SSC scat-
terplots to remove doublets and debris from the training samples. flGMI waveforms were used as the classification modality. Within
the data, 2,000 and 1,000 randomly selected cells (without overlap) with equal numbers of induced and uninduced cells were used as
training and testing data, respectively.

Classification of mitochondrial morphological changes in activated and non-activated human primary T cells
Activated and non-activated T cells cultured for 4 days were individually stained with MitoTracker Green according to the man-
ufacturer’s instructions. Following PBS washing, cells were further labeled with cell surface markers and the viability dye
mentioned previously. To classify activated and non-activated cells, the cell populations were mixed equally and passed
through the fluorescence GC system. FSC/SSC scatterplot gating was applied to remove doublets and debris, and live cells
were selected. CD25/CD69 double-positive cells were designated as activated, while CD25/CD69 double-negative cells
were identified as non-activated T cell populations. Classification was based on flGMI waveforms. In the dataset, 2,000 and
1,000 cells from each category (activated and non-activated, respectively) were randomly selected without overlap for training
and testing.

Classification of THP-1-derived monocytes and macrophages
THP-1-derived monocytes and macrophages were stained with cell surface markers and the viability dye described earlier. To clas-
sify these cells, FSC/SSC scatterplot gating was used to eliminate doublets and debris. After gating for live cells, CD11b-positive
cells were identified asmacrophages, whereas CD11b-negative cells were categorized asmonocytes. Classification relied on fsGMI,
bsGMI, and dGMI waveforms. In the dataset, 1,000 and 500 cells from each category (monocytes andmacrophages) were randomly
selected without overlap for training and testing, respectively.

Classification of exhausted and non-exhausted cells
Transiently-stimulated T cells were stained with cell surface markers and the viability dye mentioned earlier. To classify ex-
hausted and non-exhausted cells, FSC/SSC scatterplot gating was used to remove doublets and debris, and live cells were
selected. LAG3/PD-1 double-positive cells were classified as exhausted, whereas LAG3/PD-1 double-negative cells were
considered non-exhausted T cell populations. Classification relied on fsGMI, bsGMI, and dGMI waveforms. In the dataset,
400 and 400 cells from each category (exhausted and non-exhausted) were randomly selected without overlap for training
and testing, respectively.

Classification and sorting of CRISPR library using fluorescence GC
THP-1 cells were immunostainedwith the previously described anti-RelA antibody. Cells unstimulatedwith LPSwere labeledwith the
LIVE/DEAD FFR dead cell staining kit (Thermo Fisher Scientific) as a reference label. Classification of LPS-stimulated and -unstimu-
lated cell populations was performed with equal concentrations of each cell type passing through the fluorescence GC system. FSC/
SSC scatterplot gating was applied to exclude doublets and debris from the training dataset. Classification was based on flGMI
waveforms. In the dataset, 1,250 and 1,000 cells from each category (LPS-stimulated and unstimulated) were randomly selected
without overlap for training and testing, respectively.
The pooled CRISPR library cells were stimulated with LPS and stained with anti-RelA antibody described earlier. The trained clas-

sifier was implemented on an FPGA, allowing real-time cell judgment using GMI signals, enabling subsequent cell sorting. The time
for judgment of a single cell with the FPGAwas 6.0 ms. For small-scale library sorting, 100,000 cells were processed, with 70,000 cells
predicted as positive and sorted using the trainedmodel (coverage 1,166). The coverage is the cell number of after sorting divided by
the number of gRNAs. The experiments were performed as two independent replicates. The cells expressing 40 out of 60 pooled
sgRNAswere labeled with a ground truth marker to validate the sorting. Sorting purity was validated, with 90.8%of cells in the sorted
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sample labeled with the ground truth marker (Figure S2C). The result closely matched the predicted sorting purity of 92.6% and a
recovery of 96.3% (Figure S2B). Reproducibility of the trained model was assessed, with an average AUC score of 0.98 ± 0.02
(n = 7) and a high Zʹ-factor value of 0.83 (Figure S2D).45 For sorting of the kinase library, 6,000,000 cells (approximately 82.3 coverage)
were processed, with approximately 600,000 cells predicted as positive and sorted using the trained model within 2 h (Figure S2J).
The experiments were performed as four independent replicates.

Classification and sorting of the CRISPR kinase library using label-free GC
THP-1-derived M0 andM1macrophages were individually prepared as previously described. Following a single PBS wash, the cells
were incubated at 37"C with a 0.25% w/v Trypsin-EDTA solution (FUJIFILM Wako) for 5 min and gently scraped using a Cell Lifter
(Corning) to detach them from the culture dish. As a ground truth label, M0 macrophages were stained with CellTracker Green
CMFDA Dye (Thermo Fisher). For the classification of M0 andM1macrophages, an equal concentration of each cell type was mixed,
and this mixture was passed through the fluorescence GC system. FSC/SSC scatterplot gating was employed to eliminate doublets
and debris from the training dataset. Classification was based on fsGMI and bfGMI waveforms. In this dataset, 1,000 cells from each
category (M0 and M1 macrophages) were randomly selected without overlap for training, with an additional 1,000 cells for testing.
The reproducibility of creating a trained model was evaluated (the average AUC score was 0.85 ± 0.06, n = 7), and a high Zʹ-factor
value from the SVM score (0.75, n = 7) was obtained (Figure S7C).45 For validation of differentiation and polarization, M0 and M1
macrophages in the training sample were stained with known M0 and M1 CD markers individually (Figures S7D–S7G).20

The pooled CRISPR kinase library cells were differentiated and incubated with an M1-polarization medium. For sorting the kinase
library, 6,000,000 cells (approximately 68.6 coverage) were processed by the sorter, and approximately 500,000 cells predicted as
positive were sorted within 2 h using a classifier trained and implemented on an FPGA. To enhance purity, a threshold of SVM scores
>1 was set for cell sorting. In cases where the percentage of target cells in the pre-sorting sample was 8.3%, the predicted purity
was 37.5%, and the predicted recovery was 16.7% in the sorted sample (Figures S7A and S7B). These experiments were performed
as three independent replicates.

QUANTIFICATION AND STATISTICAL ANALYSIS

Adapter trimming and demultipexing were performed using Ultraplex.46 The large-scale screening data were analyzed according to
the published bioinformatics pipeline (kampmannlab.ucsf.edu/mageck-inc).47,48 Briefly, raw sequencing reads from next-generation
sequencing were cropped and aligned to the reference using Bowtie2 to determine sgRNA counts in each sample. Subsequently,
counts files from two samples for comparison were input intoMAGeCK, where log2 fold changes (LFCs) and p values were calculated
for each sgRNA. Gene-level knockout phenotypic scores were determined by averaging LFCs from the top 3 sgRNAs targeting the
gene with the most significant p values.

Statistical significance for each gene was determined by comparing the set of p values for sgRNAs targeting it with the set of
p values for non-targeting control sgRNAs, employing theMann–WhitneyU test. A cutoff valuewas selected based on the distribution
of all products to ensure a false discovery rate (FDR) of < 0.01.
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Figure S1. Development and performance of a machine learning-based model that classifies the 3 
high-content phenotypes of fluorescently labeled proteins and organelles, related to Figure 2. 4 

A-C: Fluorescently labeled RelA in suspension THP-1 cells based on fluorescence ghost motion 5 
imaging (GMI) waveforms. (A) Initial cell gating. (B) Confusion matrix of the classification result. (C) 6 
Receiver operating characteristic (ROC) curve. LPS, lipopolysaccharide.  7 

D-F. Fluorescently-labeled lysosome (Lamp1) and mitochondria (COX III) in adherent HEK293 cells 8 
based on fluorescence GMI waveforms. (D) Gating schemes; cell gate, singlet gate, and size gate. (E) 9 
Confusion matrix of the classification result. (F) ROC curve. 10 

G-I. Autophagosome LC3-GFP protein translocalization in adherent HeLa cells based on 11 
fluorescence GMI waveforms. (G) Gating schemes; cell, singlet, and size gates. (H) Confusion matrix of 12 
the classification result. (I) ROC curve. 13 

J-L. Mitochondrial morphological changes in activated and non-activated human primary T cells 14 
based on fluorescence GMI waveforms. (J) Gating schemes; cell gate, singlet gate, size, live, and 15 
CD25/CD69 gate. (K) Confusion matrix of the classification result. (L) ROC curve.  16 
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Figure S2. Data obtained from the pooled CRISPR screening of a small-scale (60 sgRNAs) library 18 
using a GC-based cell sorter (GC) in the fluorescence mode, related to Figure 2 and Figure 3.  19 

A-D: Replicate 1: a sample used in Figures 2A-2D and Figure 3B. (A) Enrichment of gRNAs after GC-20 
based enrichment based on nuclear translocation of RelA. The genes downstream of the Toll-like receptor 21 
4 (TLR4) signaling pathway are shown as blue bars. (B) Precision-Recall (PR) curve. The yellow circle 22 
indicates the threshold < 0 of the support vector machine (SVM) score. (C) Validation of sorting purity. 23 
Target cells exhibiting the RelA inhibition phenotype were enriched from 67% in the pre-sorting sample to 24 
91% in the sorted sample. (D) Evaluation of the reproducibility of training classifiers. The average of the 25 
area under curve (AUC) scores was 0.98 ± 0.02 (N = 7). Mean ± SD values of the SVM scores are 26 
presented, and the Zʹ-factor value was obtained as 0.83 (N = 7). 27 

E-K. Replicate 2: a sample different from replicate 1 but analyzed with the same methods. (E) Gating 28 
was first performed by the cell gate (left) and then by the fluorescent intensity of the RelA staining and a 29 
ground truth marker (Fixable Far-Red dye), which only labeled LPS-unstimulated cells (right). (F) Randomly 30 
selected GMI waveforms for 20 cells from each condition. (G) SVM score histogram and AUC score for the 31 
classification of LPS (-) and LPS (+) cells. (H) Confusion matrix of the classification result. (I) ROC curve. 32 
(J) PR curve. The yellow circle indicates the threshold =0 of the SVM score. (K) Enrichment of sgRNAs in 33 
the small-scale pooled library. Genes downstream of the TLR4 signaling pathway are presented as blue 34 
bars. 35 
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Figure S3. Data obtained in the pooled CRISPR screening of a kinase library (7,290 sgRNAs) using 38 
a GC-based cell sorter in the fluorescence mode, related to Figure 3. 39 

A-F: Replicate 1: a sample used in Figure 3C. (A) Gating was first performed using the cell gate (left) 40 
and subsequently using fluorescence intensity of the RelA staining and a ground truth marker (Fixable Far-41 
Red dye), which only labeled LPS-unstimulated cells (right). (B) Randomly selected GMI waveforms of 20 42 
cells from each condition. (C) SVM score histogram and AUC score for the classification of LPS (-) and 43 
LPS (+) cells. (D) Confusion matrix of the classification result. (E) ROC curve. (F) Percentage of cells 44 
predicted as positive (0 < SVM score) during sorting. Batch 1: 1–1,000,000 cells, batch 2: 1,000,001-45 
2,000,000 cells, batch 3: 2,000,001–3,000,000 cells, batch 4: 3,000,001–4,000,000 cells, batch 5: 46 
4,000,001–5,000,000 cells, and batch 6: 5,000,001–6,000,000 cells. 47 

G-K. Replicate 2: a sample different from replicate 1 but analyzed with the same method. (G) Gating 48 
was first performed by the cell gate (left) and then by fluorescence intensity of the RelA staining and a 49 
ground truth marker (Fixable Far-Red dye), which only labeled LPS-unstimulated cells (right). (H) Randomly 50 
selected GMI waveforms of 20 cells from each condition. (I) SVM score histogram and AUC score for the 51 
classification of LPS (-) and LPS (+) cells. (J) Confusion matrix of the classification result. (K) ROC curve. 52 
  53 
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Figure S4. Results of pooled CRISPR screening using a GC-based cell sorter in the fluorescence 57 
mode, related to Figure 3. 58 

A-C: Replicate 1: a sample used in Figure 3C. (A) Roust Ranking Aggregation (RRA) scores of top 10 59 
hit genes. (B) p-values of top 10 hit genes. (C) Read counts of sgRNAs for representative hit genes before 60 
sorting and their subsequent enrichment in the collected sorted cells. 61 

D-G. Replicate 2: a sample different from replicate 1 but analyzed with the same methods). (D) 62 
Volcano plot visualization of statistical significance (y-axis) and magnitude of the change (x-axis) comparing 63 
before and after cell sorting, wherein the p-values were calculated with the Mann–Whitney U test. Dashed 64 
lines: cutoff for hit genes (false discovery rate; FDR = 0.01). (E) RRA scores of the top 10 hit genes. (F) p-65 
values of top hit genes. (G) Read counts of sgRNAs for representative hit genes before sorting and their 66 
subsequent enrichment in the collected sorted cells. 67 
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Figure S5. SVM histograms, related to Figure 3. 69 

The three columns of histograms were obtained for three series of independent experiments, respectively. 70 
N = 3 biological replicates (N1, N2, and N3). In the top row, the SVM scores were obtained when we 71 
developed models for classifying the nuclear translocation using the training samples. From the second to 72 
eleventh row, yellow histograms overlaid on top of those from the first row represent the SVM scores 73 
obtained when the trained model was applied to cells of each condition: MAP3K7-1, MAP3K-2, MYD88-1, 74 
MYD88-2, IRAK4-1, IRAK4-2, TNFRSF-1, TNFRSF-2, and non-targeting sgRNA CRISPR knockout cells. 75 
  76 
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Figure S6. Development and performance of a machine learning-based model that classifies the 78 
high-content phenotypes, related to Figure 4. 79 

A-D: M0 and M1 macrophages based on label-free GMI waveforms. (A) Gating schemes: cell gate, 80 
singlet gate, size gate, live gate, and FSC/Ground truth marker plot of the training sample. M0 macrophages 81 
were labeled with a ground truth marker (CellTracker Green dye). (B) Confusion matrix for the classification 82 
of M0 and M1 polarized macrophages. (C) ROC curve. (D) Combination analysis of the label-free GMI 83 
waveforms for classification of M0 and M1 macrophages. 84 

E-G. THP-1 monocytes and THP-1-derived macrophages based on label-free GMI waveforms. (E) 85 
Gating schemes; cell, singlet, size, live, and CD11b/FSC gates. THP-1-derived CD11b-positive and CD11b-86 
negative cells were identified as positive and negative, respectively, for a training data set. (F) Confusion 87 
matrix of the classification result. (G) ROC curve. 88 

H-J. Exhausted (LAG3/PD-1 double-positive) and non-exhausted (LAG3/PD-1 double-negative) 89 
human primary T cells based on label-free GMI waveforms. (H) Gating schemes; cell, singlet, size, live, 90 
and LAG3/PD-1 gates. LAG3/PD-1 double-positive cells were identified as positive and LAG3/PD-1 double-91 
negative cells were identified as negative for a training data set. (I) Confusion matrix of the classification 92 
result. (J) ROC curve. 93 
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Figure S7. Data obtained in the pooled CRISPR screening using a GC-based cell sorter in the label-95 
free mode (replicate 1: a sample used in Figure 5A), related to Figure 5. 96 

A-C: Assuming the percentage of target cells in the sample was 3 %, (A) purity in the sorted sample was 97 
expected to be 37.5 %. The yellow circle indicates the threshold of 1 < SVM score. (B) The predicted 98 
recovery in the sorted sample was 16.7 %. The yellow circle indicates the threshold of 1 < SVM score. (C) 99 
Evaluation of the reproducibility in training models. The average of the AUC score was 0.85 ± 0.07 (N = 7). 100 
Mean ± SD values of the SVM scores are presented, and the Zʹ-factor value was obtained as 0.75 (N = 7). 101 

D-G: Validation of the training sample using cluster of differentiation (CD) markers: (D) CD marker-stained 102 
M0 cells, (E) CD marker-stained M1 cells, (F) unstained M0 cells, and (G) unstained M1 cells. 103 
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Figure S8. Data obtained in the pooled CRISPR screening using a GC-based cell sorting the label-105 
free mode (Replicate 2: a sample different from replicate 1 but analyzed with the same), Related 106 
Figure 5. 107 

(A) Gating schemes: cell gate, singlet gate, size gate, live gate, and FSC/Ground truth marker plot of the 108 
training sample. M0 macrophages were labeled with a ground truth marker (CellTracker Green dye). (B) 109 
Randomly selected fsGMI and bfGMI waveforms of 20 cells from each population. (C) SVM score histogram 110 
for the classification of M0 and M1 macrophages. (D) Confusion matrix for the classification of M0 and M1 111 
macrophages. (E) ROC curve. (F-G) Assuming the percentage of target cells in the pre-sorting sample was 112 
3 %, (F) purity in the sorted sample was expected to be 16.7 %. Yellow circle indicates the threshold of 1 < 113 
SVM score. (G) Predicted recovery in the sorted sample was 16.7 %. Yellow circle indicates the threshold 114 
of 1 < SVM score. (H-K) Validation of the training sample using CD markers: (H) CD marker-stained M0 115 
cells, (I) CD marker-stained M1 cells, (J) unstained M0 cells, and (K) unstained M1 cells. 116 
 117 
  118 
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Figure S9. Results of pooled CRISPR screening using a GC-based cell sorter in the label-free mode, 120 
related to Figure 5. 121 

A-C: Replicate 1: a sample used in Figure 5A. (A) RRA scores of the top 10 hit genes. (B) p-values of 122 
the top 10 hit genes. (C) Read counts of sgRNAs for the representative hit genes before sorting and their 123 
subsequent enrichment in the collected sorted cells. 124 

D-G. Replicate 2: a sample different from replicate 1 but analyzed with the same methods. (D) 125 
Volcano plot visualization of statistical significance (y-axis) and magnitude of the change (x-axis) comparing 126 
before and after the cell sorting, wherein the p-values were calculated with the Mann–Whitney U test. 127 
Dashed lines: cutoff for hit genes (FDR = 0.01). (E) RRA scores of the top 10 hit genes. (F) p-values of top 128 
10 hit genes. (G) Read counts of sgRNAs for the representative hit genes before sorting and their 129 
subsequent enrichment in the collected sorted cells. 130 
  131 
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 132 

Figure S10. Macrophage surface marker expression of control M0, control M1, and BRD2 CRISPR 133 
KO M1 cells, Related Figure 5. 134 

Samples were different from those used in Figure 5B but analyzed using the same methods (A: N2, B: N3). 135 
CD11b and CD38 were used as pan-macrophage and M1-specific markers, respectively. 136 
 137 



Submitted Manuscript: Confidential 

20 
 

Supplemental Tables 138 

Table S5. Correspondence table between replicates and figure number, related to Figure 2A-D, 3B, 139 
4A-D, and 5A. 140 

NFkB small scale (pilot) Replicate 1 Fig 2A-D, S1A-C, S2A-D 

Replicate 2 S2E-K 

NFkB large scale (kinase) Replicate 1 Fig 3B, S3A-F, S4A-C 

Replicate 2 S3G-K, S4D-G 

Macrophage (kinase) Replicate 1 Fig 4A-D, Fig 5A, S6A-D, S7, 
S9A-C 

Replicate 2 S8, S9D-G 
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