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A universal sequencing read interpreter
Yusuke Kijima1,2,3, Daniel Evans-Yamamoto2,4, Hiromi Toyoshima2, Nozomu Yachie1,2,5*

Massively parallel DNA sequencing has led to the rapid growth of highly multiplexed experiments in biology.
These experiments produce unique sequencing results that require specific analysis pipelines to decode highly
structured reads. However, no versatile framework that interprets sequencing reads to extract their encoded
information for downstream biological analysis has been developed. Here, we report INTERSTELLAR (interpre-
tation, scalable transformation, and emulation of large-scale sequencing reads) that decodes data values
encoded in theoretically any type of sequencing read and translates them into sequencing reads of another
structure of choice. We demonstrated that INTERSTELLAR successfully extracted information from a range of
short- and long-read sequencing reads and translated those of single-cell (sc)RNA-seq, scATAC-seq, and
spatial transcriptomics to be analyzed by different software tools that have been developed for conceptually
the same types of experiments. INTERSTELLAR will greatly facilitate the development of sequencing-based ex-
periments and sharing of data analysis pipelines.
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INTRODUCTION
In the last couple of decades, harnessing microarray and high-
throughput DNA sequencing, the concept of DNA barcodes has
enabled a range of pooled biological screens. Earlier examples
include the establishment of the yeast deletion collection, where
each strain was constructed to have two unique DNA barcodes at
a deletion locus (1). The barcoded yeast strains can be pooled and
subjected to a single growth competition assay whose individual rel-
ative growth changes can be read out by barcode quantities mea-
sured by microarray or high-throughput sequencing before and
after the competition (2). This strategy pioneered the field of chem-
ical genomics to screen drug target genes (3, 4). Soon after, the same
concept was also applied to mammalian cell culture–based genome-
wide gene knockdown (5) and knockout assays (6, 7). In these
assays, cells are transduced by a lentiviral library encoding short-
hairpin (sh)RNAs or CRISPR-Cas9 guide (g)RNAs. Cell growths
conferred by different perturbations can be massively quantified
by polymerase chain reaction (PCR) amplification and sequencing
of the small shRNA- or gRNA-encoding DNA fragments. Further-
more, experimental systems that produce chimeric fusions of distal
genomic regions and those of DNA barcodes associated with differ-
ent factors have enabled the exploration of chromatin conforma-
tions (8), protein interactions (9–12), genetic interactions (13),
and spatial cellular distribution of single-molecule RNAs (14) in
large scale. In single-cell and spatial genomics, single-cell identifiers
(IDs), spatial IDs, and unique molecular IDs (UMIs) are used to
uniquely tag corresponding transcriptomes or genomic DNA frag-
ments, which led to the development of single-cell RNA sequencing
(scRNA-seq) (15–18), scATAC-seq (19, 20), spatial transcriptomics
(21, 22), and spatial genomic (23) technologies. The above-men-
tioned methods each enable multiplexing of a number of experi-
ments at once and produce a sequencing library. Sequencing

libraries from different assays can also be further multiplexed for
a single sequencing run by fusing additional library-specific,
unique DNA barcode(s) to each sequencing library DNA. The
output DNA molecules of these experiments have a range of com-
plexities, some of which encode multiple information segments
whose combinations are sometimes designed to be read out by mul-
tiple reads (e.g., paired-end reads and index reads).

However, there have been common issues—most of these se-
quencing-based experiments have been developed with their own
proprietary software tools for specific sequence read structures.
While many of such tools have advanced downstream data analysis
capabilities, they often cannot be reused even for sequencing reads
produced by conceptually the same types of experimental systems.
New experimental methods have been repeatedly proposed for con-
ceptually identical analyses with improved performances and differ-
ent read structures, and data analysis tools that process essentially
the same information have been developed for their respective read
structures. These reinventions of the wheel have particularly been
observed in the scRNA-seq field (24). These software tools cannot
be exchanged for different scRNA-seq library structures or cross-
validated by applying them to the same scRNA-seq dataset.
Several efforts have been made to develop flexible software tools
that are capable of analyzing different read structures of a certain
category of experiments, such as UMI-tools (25), zUMIs (26),
scumi (for UMI-based RNA-seq and scRNA-seq) (27), and SnapA-
TAC (for scATAC-seq) (28), yet they are not effective for the
ongoing development of new experiments that produce unique
read structures.

Any sequencing data analyses follow identification of sequence
segments in each read (e.g., identification of cell ID, UMI, and
cDNA-encoding regions in scRNA-seq reads) and downstream
analyses of the extracted sequence segments and values (e.g.,
mapping to the reference genome and UMI counting of each
RNA species in scRNA-seq). Therefore, we propose two solutions
to the community: (i) The development of sequencing read inter-
preters and data analysis tools separately—if a read interpreter only
extracts data values encoded in sequencing reads, then its data anal-
ysis pipeline should be applicable for sequencing reads of other ex-
periments that produce the same data structures; and (ii) the
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development of a read translator—if sequencing reads of a certain
format could be translated into another read structure, the existing
data analysis pipelines developed for the specific read structure
could be used to analyze other read structures. In this study, we
have identified that these two ideas can be achieved by a single uni-
versal tool, which we have developed and called INTERSTELLAR
(interpretation, scalable transformation, and emulation of large-
scale sequencing reads).

RESULTS
Overview of INTERSTELLAR
INTERSTELLAR interprets high-throughput sequencing reads and
translates them into sequencing reads of another read structure
(Fig. 1). The flexible sequence segment identification of “source
reads” enables economic development of their downstream data
analysis pipelines. A user-defined set of extracted sequence seg-
ments can then be converted into “values,” according to how the
user defined the read interpretation, which can further be used to
translate the source reads into “destination reads.” This read trans-
lation enables current data analysis tools that originally only accept a
specific read structure to analyze sequencing reads of another
structure.

INTERSTELLAR first identifies sequence segments of reads in
FASTQ files according to the user ’s definition provided in a
process configuration file (step 1). The source read structure can

be defined flexibly, where multiple segments on each sequencing
read are specified by combinations of their lengths, locations, and
neighboring sequence motifs using regular expression, followed by
identification of valid sequence segments according to their average
sequencing quality (Q) scores. Three types of attributes, “combina-
torial,” “parental,” and “local,” can be used to associate multiple se-
quence segments with each other. A combinatorial segment group
can be defined to collectively denote a specific information value. A
parental segment (or combinatorial parental segment group) can be
paired with an independent set of local segments (or combinatorial
local segment groups), where sequence-to-value conversion of the
local segment(s) is independently performed for its parental
segment. For example, cell IDs and UMIs of typical scRNA-seq
reads can be defined as parental segments and their local segments,
respectively, where the same UMI sequences associated with differ-
ent cell IDs are interpreted as different objects. Multiple-source read
structures can also be defined for a single set of input sequencing
reads that are produced by a one-shot sequencing of different
libraries.

The segment identification process can be performed indepen-
dently for fragmented FASTQ files using distributed computing,
where each fragmented process yields segmented sequences and
count-up information for each unique segment sequence. The se-
quence count-up information derived from different fragmented
processes is then merged to compute an error-corrected sequence
for each unique segment sequence (step 2). INTERSTELLAR

Fig. 1. Overview of INTERSTELLAR. Conceptual diagram representing how INTERSTELLAR (interpretation, scalable transformation, and emulation of large-scale se-
quencing reads) interprets and translates sequencing reads with its file management and distributed computing strategies.
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enables four error correction options: “imputation-to-majority,”
“mapping-to-allowlist,” Bartender (29), and a user-developed
plugin. In the imputation-to-majority correction, a merged rank-
read count curve of each sequence segment is first obtained, and
its knee point (the maximum curvature point) is determined.
Segment sequences below the knee point are then corrected to
their closest similar sequences above the knee point using the Lev-
enshtein distance metric. Similarly, the allowlist mapping uses the
Levenshtein distance metric to map input segment sequences to a
user-provided allowlist. In these two options, the minor segment
sequences (above the Levenshtein distance threshold) are ignored.
The barcode sequence correction pipeline Bartender can also be
used, where input segment sequences are first grouped into clusters
based on the Hamming distance metric, and minor sequences in
each cluster are imputed into the top majority sequence. In contrast
to the imputation-to-majority strategy, Bartender can potentially
rescue valid sequences that are poorly represented in the pool. Al-
ternatively, users can provide a shell script as a user-defined plugin
to use a customized error correction method. Once an error correc-
tion rule table is generated, it is used to error-correct segment se-
quences originating from each of the fragmented FASTQ files using
distributed computing. The above-mentioned read interpretation

process can be applied to any high-throughput sequencing read
analysis, and the generated error-corrected segment sequence files
enable efficient development of their downstream data analysis
pipelines.

If defined in the process configuration file, then the read trans-
lation into destination read structures are next processed for the
error-corrected source segment sequences (step 3). Destination
read structures can be flexibly specified by using International
Union of Pure and Applied Chemistry codes and/or allowlists of
destination segment sequences. First, using distributed computing,
a segment value file and a value tree are generated from each of the
error-corrected segment sequence files, where each unique segment
sequence is converted into a numerical value, and parental-local
segment allocations of unique values and unique combinatorial
value groups are represented in a tree structure. The value tree
files originating from the fragmented FASTQ files are then passed
to a single computing node to generate a merged value tree. Next,
the values in the merged value tree are replaced by new values to
minimize the number of numerical value species for each variable
in a way that they still uniquely maintain the same tree topology
(step 4). Obtaining the value conversion rule table that achieved
the optimization of the merged value tree, segment value files are

Fig. 2. Interpretation of highly structured RCP-PCR reads. (A) The conceptual diagram of row-column-plate polymerase chain reaction (RCP-PCR). (B) Two-step PCR
amplification and paired-end sequencing of DB and AD barcode cassette libraries. (C) Rank-read count plots of row-specific barcodes (RBCs), column-specific barcodes
(CBCs), and plate-specific barcodes (PBCs).
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separately processed to derive optimized segment value files and
then destination FASTQ files by distributed computing, where
unique value-to-destination-sequence conversion rules are autono-
mously generated for the destination read structures (steps 5 and 6).
The value space optimization, which takes into account the paren-
tal-local segment allocations, is particularly effective when sequence
complexities of destination segments are lower (e.g., shorter in
length) than those of the corresponding source segments. This
process enables a destination segment of less information represen-
tativity (versus its source segment) to host all or the maximum pos-
sible number of corresponding values represented in the source
reads. (When the number of optimized values is over the informa-
tion representativity of the destination value segment, frequent
values are prioritized, and read information associated with any
values that are not assigned to a destination segment sequence is
ignored.) Throughout the process, the average Q scores of source
segment sequences are bequeathed from the fragmented FASTQ
files through the intermediate segment sequence and value files
and given to all letters of corresponding destination segments in
the generating FASTQ files. New bases that are not associated
with the values inherited from the source reads are all given a Q
score of 40 in the destination reads. As seen above, the distributed
computing process is designed to perform many small conversion
tasks in parallel, where the generation of conversion rules that re-
quires monitoring of the entire segment sequence or value space
is operated using a single computing node by compressing informa-
tion from each fragmented task into a small hash table data
structure.

Interpretation of highly structured barcode reads
To demonstrate that INTERSTELLAR can be used to analyze highly
structured sequencing reads, we first decoded a row-column-plate
(RCP)–PCR library generated for massively parallel identification of
barcoded plasmid collections used for barcode fusion genetics yeast
two-hybrid (BFG-Y2H), an en masse protein interaction technolo-
gy (9). In general, RCP-PCR is developed to identify clonal DNA
samples sandwiched by common PCR primer sites that are
arrayed into many PCR microwell plates (Fig. 2A). Samples in
each microwell plate are first amplified by forward and reverse
primers with overhang sequences encoding corresponding plate
row-specific barcodes (RBCs) and column-specific barcodes
(CBCs), respectively. PCR products are then pooled by plates and
subjected to the second round of PCR by primers with overhang
sequences encoding sample plate-specific barcodes (PBCs) and Il-
lumina sequencing adapters.

BFG-Y2H uses two types of barcode cassettes, namely, DB-X and
AD-Y barcode cassettes (for details, see Materials and Methods).
Each type of barcodes encodes site-specific Cre recombination
sites, loxP and lox2272, and two barcodes in a different order
(Fig. 2B). One of the previously established methods requires sub-
cloning of many barcode cassettes into 384-well plates from a pool
of those with degenerated barcode sequences. They are then ana-
lyzed by RCP-PCR and high-throughput sequencing for the identi-
fication and verification of the isolated barcode cassettes. When
using a short-read sequencer whose base calling quality drops
along with base calling cycles, two overlapping subregions of the
230–base pair (bp) cassettes can be amplified separately by RCP-
PCR for better performance (Fig. 2B).

To demonstrate INTERSTELLAR, DB-X barcode cassettes were
subcloned into three and a half 384-well microwell plates (1344
samples), and AD-Y barcode cassettes were subcloned into three
384-well microwell plates (1152 samples). The identification of
these barcode cassette samples required a total of 14 plate PCR re-
actions. The four types of RCP-PCR libraries (two each for DB-X
and AD-Y) were mixed 1 M volume each and sequenced. INTER-
STELLAR was used to interpret the sequencing reads of the differ-
ent structures with different barcodes all at once. We first confirmed
that the expected numbers of unique RBCs (16 rows), CBCs (24
columns), and PBCs (14 plates) used in this experiment were suc-
cessfully observed (Fig. 2C). Next, the sequence segment informa-
tion obtained by INTERSTELLAR was analyzed by another script to
identify dominantly representing (or clonal) barcode sequences in
each well and to separately interrogate any mutational damages in
loxP and lox2272 sequences in each well (fig. S1). For each barcode
cassette, two subregion amplification products both contained one
of the two barcodes. Last, sample wells with no high-confident
agreement for the barcode between the two types of RCP-PCR
products were discarded, yielding a total of 287 (18.7%) and 299
(26.0%) high-confident clonal DB-X and AD-Y barcode cassette
samples, respectively, whose gain rates were within the range of
those expected from the previous study. We also randomly selected
24 independent samples and confirmed by Sanger sequencing that
23 of their sequences were consistent with those identified by
RCP-PCR.

Translation of scATAC-seq reads
We next tested a simple translation of high-throughput sequencing
reads that did not have a parental-local segment allocation. Using
INTERSTELLAR, we emulated a sci-ATAC-seq dataset ofDrosophi-
la embryogenesis (30) in 10x Genomics’ Cell Ranger ATAC, origi-
nally developed to analyze 10x scATAC-seq libraries. In sci-ATAC-
seq, followed by fixation, sample nuclei are split into subpools,
where open chromatin regions of nuclei are fragmented by Tn5
transposase with subpool-specific barcodes, yielding barcoded
DNA fragments. After combining the barcoded nuclei samples,
they are split into subpools again, where unique combinations of
Illumina i5 and i7 indexed adapters are concatenated to the frag-
mented DNA in the nuclei of the corresponding subpool by PCR.
Last, PCR products are pooled for a single Illumina sequencing run.
This multistep split-and-pool strategy is designed to massively tag
open chromatin DNA fragments of single cells with cell-specific
combinations of DNA barcodes. Each library was sequenced by a
total of four reads: two paired reads to sequence the genomic
region and two index reads each to identify a combination of four
barcodes (Fig. 3A). On the other hand, 10x scATAC-seq is an emul-
sion-based method that encapsulates single cells in water-in-oil
droplets with unique droplet-specific 16-bp barcodes. In each
droplet, open chromatin regions are fragmented by Tn5 and concat-
enated to the droplet-specific barcodes (i.e., cell IDs), each of whose
products is sequenced by a total of three reads (Fig. 3A).

We translated the sci-ATAC-seq dataset of embryos 6 to 8 hours
after egg laying to the read structure of 10x scATAC-seq, performed
two-dimensional uniform manifold approximation and projection
(UMAP) embeddings of the high-dimensional single-cell genomic
accessibility count matrix by Cell Ranger ATAC, and compared it
with that from the original sci-ATAC-seq reads obtained using
the proprietary data analysis pipeline (Fig. 3B). The cell state
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clusters identified by the original sci-ATAC-seq pipelinewere mark-
edly replicated in the translated dataset analyzed by Cell Ranger
ATAC. To assess the data similarity between the original and emu-
lated datasets, we compared Euclidean distances in a high-dimen-
sional latent semantic indexing (LSI) space between randomly
selected pairs of cells in the two datasets and found a Pearson’s cor-
relation coefficient (R) of 0.898 (Fig. 3C). Furthermore, we also
measured the rank difference in the Euclidean distance of the
same cell pairs in the two datasets and compared it with the
random expectation (see Materials and Methods). We demonstrat-
ed that the data profiles were significantly preserved after the read
translation (P < 2.2 × 10−16). Furthermore, we examined whether
the read translation by INTERSTELLAR maintained the ability of
the dataset to have its biological information extracted, similar to
the original pipeline. The sci-ATAC-seq reads of three embryonic
samples of 2 to 4, 6 to 8, and 10 to 12 hours after egg laying were
pooled, translated, and analyzed by Cell Ranger ATAC. We con-
firmed that the analysis successfully recaptured the dynamic diver-
sification of single-cell genomic accessibilities through Drosophila
embryogenesis and cell state–specific marker gene accessibilities
and their genomic distributions (fig. S2, A to E).

Cross-evaluation of different scRNA-seq reads and
software tools
Differences in information capacity (or sequence representativity)
between source segments and destination segments need to be

taken into consideration in some read translations. For example,
when the total base pair length of a destination segment(s) is
shorter than that of the corresponding source segment(s), the des-
tination segment might not be able to represent all the values ob-
served in the source reads. However, the value space optimization
implemented in INTERSTELLAR greatly alleviates this issue by al-
lowing the end user to interpret parental-local segment allocations
of the source read structure. For example, UMIs of typical scRNA-
seq reads are local to their corresponding transcription products of
corresponding single cells that are uniquely encoded in other seg-
ments. Some scRNA-seq libraries use shorter UMI segments than
others, but in INTERSTELLAR, even the read translations from the
latter to the former usually do not have major issues, because the
number of unique UMI sequences observed for each of the combi-
natorial parental segments is practically limited and the value space
for the UMIs representing the entire scRNA-seq data can be largely
compressed.

To demonstrate that different scRNA-seq read structures can be
practically translated to and from each other and analyzed by differ-
ent software tools of choice that have originally been developed for
specific read structures, we obtained four sequencing read datasets
of 10x Chromium V3 (mouse heart; 16-bp cell ID and 12-bp UMI)
(31), Drop-seq (mouse eye; 12-bp cell ID and 8-bp UMI) (15),
Quartz-Seq2 (mouse stromal vascular fraction; 14-bp cell ID and
8-bp UMI) (32), and SPLiT-seq (mouse brain; three combinatorial
8-bp cell ID and 10-bp UMI) (17), all of which are representative

Fig. 3. Translation of scATAC-seq reads. (A) Read structures of sci-ATAC-seq and 10x scATAC-seq. ID, identifier. (B) Two-dimensional uniform manifold approximation
and projection (UMAP) embeddings of sci-ATAC-seq data processed by its original pipeline for Drosophila embryo 6 to 8 hours after egg laying and that obtained by Cell
Ranger ATAC with the read translation using INTERSTELLAR. Cell state annotations obtained by the original pipeline were applied to both embeddings. (C) Correlation in
distance of two cells between the high-dimensional genomic accessibility count space of the original sci-ATAC-seq data and that by Cell Ranger ATAC. For each dataset,
Euclidean distances in a high-dimensional latent semantic indexing (LSI) space were measured for the same 50,000 randomly sampled cell pairs. The inset sina plot
represents rank difference distribution in the Euclidean distance of the same cell pairs before and after translation. The crossbar represents the median. ***P < 2.2 ×
10−16 by the two-sided Wilcoxon rank sum test. R, correlation coefficient.
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state-of-the-art scRNA-seq methods (Fig. 4A). We compared their
analysis results obtained using the original software tools with those
by 10x Cell Ranger (originally developed for 10x Chromium) and
dropseq-tools (originally developed for Drop-seq) with read trans-
lation using INTERSTELLAR (Fig. 4B).

While all of the read translations were first performed with the
value space optimization where UMI sequences local to the cell ID
segments were optimized and translated to destination segment se-
quences, we also examined another emulation strategy that be-
queathed the same UMI sequences to the destination reads for
the translations whose destination UMI lengths were equal to or
longer than those of the sources (constant sequences were added
to the source UMIs to meet the length of the destination UMIs).
In these sequencing library emulations, 10x Chromium V3 and
Drop-seq read datasets were also self-translated by INTERSTEL-
LAR for 10x Cell Ranger and dropseq-tools, respectively. The tran-
scriptomic profiles of single cells in the translated datasets were
compared to those in the original datasets by their correlations in
the Euclidean distances of two cells in the high-dimensional tran-
scriptome space and by the rank difference distribution of the Eu-
clidean distances in the two datasets compared to random
expectation (Fig. 4C). The “UMI reassignment” (value space opti-
mization) and “UMI bequeathing” strategies both conferred
almost identical results. Furthermore, the read translation that re-
quired shortening of the UMI lengths with the UMI reassignment
strategy also demonstrated similar results to those which did not
require UMI shortening, suggesting efficient read translations. A
98.17 and 99.99% of single cells retained the complete source
UMI segment values in the emulation of 10x Chromium and
SPLiT-seq datasets for dropseq-tools, respectively, whereas the
translations without value space optimizations showed markedly
poor cell state preservations (Fig. 4D) and Euclidean distance cor-
relations (Fig. 4E), and no single cell retained the complete UMI
segment values (Fig. 4F).

While all of the read dataset translations by INTERSTELLAR
largely retained the single-cell transcriptome profiles of the original
datasets processed by their proprietary tools, the self-emulation of
the Drop-seq dataset for dropseq-tools showed a variance in con-
trast to that of the 10x Chromium V3 for 10x Cell Ranger. This
was likely due to the use of the Levenshtein distance–based error
correction for interpretation of the cell ID segments in INTER-
STELLAR, where 10x Cell Ranger also uses a Levenshtein dis-
tance–based error correction, but dropseq-tools (Drop-seq) uses a
unique error correction metric trained by its cell ID synthesis errors.
[Quartz-Seq pipeline (Quartz-Seq2) and split-seq-pipeline (SPLiT-
seq) use Sequence-Levenshtein distance (33) and Hamming dis-
tance, respectively.] To test this hypothesis, we performed self-em-
ulation of the Drop-seq library by the UMI reassignment strategy
with no error correction in the cell ID segments (Fig. 4G) and dem-
onstrated that a much smaller variance was produced when the
error correction process was fully performed in dropseq-tools
(Fig. 4H). Apart from the variance observed in the self-translation,
generally, the other sources of variance between the emulated and
original data could be explained by differences in other software-
specific downstream data processes that are independent of INTER-
STELLAR. For example, the Quartz-Seq pipeline only obtains read
count profiles of coding regions, while Cell Ranger and dropseq-
tools account for 3′-untranslated regions.

To show the robustness of the read translation with harder tasks,
we next translated each of the four scRNA-seq read datasets into a
hypothetical read structure that has only 11-bp cell ID and 7-bp
UMI segments, both of which are shorter than those of the original
datasets. We then translated each of the simulated read datasets back
into their source read structures (“round-trip” conversion) and eval-
uated the information preservation using the corresponding origi-
nal software tool (fig. S3A). We observed similar cell state
distributions before and after the round-trip conversions in all
methods (fig. S3, B and C). Notably, the Quartz-Seq data before
and after the round-trip conversion showed improved agreement
(R = 0.999; fig. S3C) compared to the agreement between the
Quartz-Seq data and that emulated in Cell Ranger and dropseq-
tools (Fig. 4C), supporting the hypothesis that the differences in
the downstream processing pipelines were the sources of variance.
In contrast, this was not the case for SPLiT-seq, which may be due to
the differences in cell ID error correction methods, cell ID loss from
translation into a shorter sequence space, or the combination
thereof. Nevertheless, we could not detect any negative effect
caused by INTERSTELLAR itself.

To further challenge INTERSTELLAR with translating a more
complex read structure with high-order value space optimizations,
we performed a round-trip conversion between a pooled library of
10x Chromium scRNA-seq datasets and a hypothetical read struc-
ture with multilayered parental-local segment allocations (fig. S4A).
While the multiplexed 10x Chromium libraries are sequenced by a
combination of four reads, one for cell ID and UMI, one for tran-
scripts, and two others as sample indices, we designed the hypothet-
ical destination read structure to have a total of 17 segment variables
in addition to the transcript sequence segment. Analyzing both the
original and round-tripped reads using 10x Cell Ranger, we con-
firmed that INTERSTELLAR could preserve well the single-cell
transcriptome profile information (R = 1.000; fig. S4, B and C).

Translation of spatial transcriptomics reads
In the translation of scATAC-seq and scRNA-seq reads, the values
extracted from the source segment sequences were assigned to des-
tination segment sequences that were arbitrarily generated or select-
ed from a given allowlist. However, in INTERSTELLAR, the user
can also define the translation of source segment sequences to cor-
responding destination segment sequences by providing a sequence
conversion table. To demonstrate the use of this function, we trans-
lated spatial transcriptome reads of Slide-seq (21) to the read struc-
ture of 10x Visium (22) and analyzed them by Visium’s proprietary
software Space Ranger. The two spatial transcriptomics technolo-
gies have been developed with similar conceptual designs. In
brief, a tissue sample section is applied to a surface material
where reverse transcription (RT) primers with unique positional
barcodes are immobilized on distinct locations of the two-dimen-
sional surface. Transcriptomes released from cells of specific posi-
tions are captured by proximal, positionally barcoded RT primers
and reverse-transcribed such that they are fused to the positional
barcodes for pooled high-throughput sequencing. Both read struc-
tures are similar to those of scRNA-seq (i.e., UMI used to uniquely
identify each RT primer molecule; Fig. 5A). The major difference
between the two spatial transcriptomics technologies is in the prep-
aration of positionally barcoded RT primers. In Visium, RT primers
with known positional barcode sequences are immobilized on pre-
determined spots of the two-dimensional surface. In contrast, Slide-
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Fig. 4. Cross-evaluation of different scRNA-seq reads and software tools. (A) Read structures of different single-cell RNA sequencing (scRNA-seq) methods. bp, base
pair. (B) Two-dimensional UMAP embeddings of scRNA-seq datasets processed by their original pipelines and those analyzed using 10x Cell Ranger and dropseq-tools by
read translation using INTERSTELLAR with the unique molecular ID (UMI) reassignment strategy. Cell state annotations obtained by the original pipelines were applied to
the translated results. (C) Correlation in distance of two cells between the high-dimensional transcriptome spaces of the original datasets and those translated for Cell
Ranger and dropseq-tools with the UMI reassignment and UMI bequeathing strategies. For each dataset, Euclidean distances in the gene expression count matrix were
measured for 50,000 randomly sampled cell pairs. The bottom-right inset sina plot of each panel represents rank difference distribution in the Euclidean distance of the
same cell pairs before and after translation. The crossbar represents the median. (D) Two-dimensional UMAP embeddings of 10x Chromium and SPLiT-seq datasets
processed by their original pipelines and those analyzed by dropseq-tools using INTERSTELLAR without value space optimizations. (E) Correlation in distance of two
cells between the high-dimensional transcriptome spaces of the original datasets and those translated for dropseq-tools without value space optimizations. (F) UMI loss
rate per cell with and without value space optimizations. (G) Two-dimensional UMAP embedding of the Drop-seq dataset self-translated for dropseq-tools with no cell ID
error correction. (H) Correlation in distance of two cells between the high-dimensional transcriptome spaces of the original and self-translated Drop-seq datasets. ***P <
2.2 × 10−16 by the two-sided Wilcoxon rank sum test.
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seq uses uniquely barcoded beads of unidentified barcode sequenc-
es, distributes them onto a glass slide surface, and retrospectively
identifies the positional barcode sequences by sequencing by liga-
tion before applying sample tissue.

We analyzed five Slide-seq libraries (hippocampus, cerebellum 1,
cerebellum 2, kidney, and liver) using Space Ranger. While 10x
Visium and Space Ranger are designed to analyze 4992 spatial
spots at a time, a Slide-seq slide is usually composed of more than

20,000 barcoded beads. Therefore, we scaled the Slide-seq sample
space coordinates and tiled the Visium slides, where each tile was
treated as a single Visium experiment, and Slide-seq bead positions
were further aligned to the most proximal Visium spots of the cor-
responding tiles (Fig. 5B). We first sought the best scaling size of the
Slide-seq slide that enabled the assignment of single Slide-seq beads
to unique Visium spots. Among the three expansion scales of ×1,
×5, and ×10, we found that the ×10 scaling enabled an average of

Fig. 5. Translation of spatial transcriptomics reads. (A) Read structures of Slide-seq and 10x Visium. (B) Strategy to associate Slide-seq positional barcodes to those of
multiple 10x Visium slides. Multiple Visium slides are first tiled across an enlarged Slide-seq field with a given scaling factor. Slide-seq positional barcodes are then
associated to the closest Visium positional barcodes. (C) Relative frequency distributions in number of Slide-seq positional barcodes assigned per Visium positional
barcode with scaling factors of ×1, ×5, and ×10. Error bar indicates mean ± SEs. (D) Original Slide-seq datasets and those analyzed by 10x Space Ranger with ×10
scaling. Each grid represents a tiled Visium slide. The spatial data points are color coded according to their gene expression profile clusters identified independently
in the analysis of each sample. (E) Correlation in Euclidean distance of two positional transcriptome profiles (UMI count matrices) between the original Slide-seq datasets
and those translated and analyzed using Space Ranger with the read translation. Randomly sampled 50,000 positional barcode pairs with unique correspondences
between the original and translated datasets were analyzed for each tissue sample. The inset sina plot represents rank difference distribution in the Euclidean distance
of the same cell pairs before and after translation. The crossbar represents the median. ***P < 2.2 × 10−16 by the two-sided Wilcoxon rank sum test.
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99.6% Slide-seq positional barcodes across the five samples to find
their unique Visium spots (Fig. 5C and table S1). After generating a
sequence conversion table for Slide-seq positional barcodes to their
corresponding Visium spot barcode of corresponding tiles, reads
were translated using INTERSTELLAR and analyzed by Space
Ranger. As a result, the spatial gene expression patterns obtained
by the read translations were markedly similar to those analyzed
by the original pipeline (Fig. 5D). Euclidean distances of two posi-
tional pairs in the high-dimensional transcriptome space were
highly correlated before and after the read translation (Fig. 5E).
The median rank differences of Euclidean distances before and
after read translation were all significantly lower than those of
random expectation but seemed highly dependent on the sequenc-
ing quality. The median rank differences before and after translation
for hippocampus, cerebellum 1, cerebellum 2, kidney, and liver were
1479, 3874, 1626, 2054, and 1944, respectively, where their average
read counts per positional barcode were 5363, 315, 10,262, 9544,
and 15,481, respectively.

Recent studies have used polyadenylated cellular RNA barcodes
for scRNA-seq to obtain single-cell transcriptomic information to-
gether with cell clone barcodes [e.g., CellTagging (34) and LARRY
(35)], cell lineage barcodes [e.g., scGESTALT (36)], and genetic per-
turbation reagent information [e.g., Perturb-seq (37) and CROP-
seq (38)]. To demonstrate that INTERSTELLAR can analyze such
multimodal sequencing read datasets, we also translated the recent-
ly published sci-Space (39) reads for 10x Cell Ranger. The sci-Space
read structure is composed of read 1, always encoding cell ID and
UMI segments; and read 2, encoding cDNA sequence, spatially de-
posited positional ID, section ID, or slide ID (Fig. 6A), where a
combination of the three IDs paired with the same cell ID defines
a predefined two-dimensional coordinate among multiple sci-Space
slides for that single cell. The cell states identified from the translat-
ed reads using Cell Ranger and their spatial positions were markedly
similar to those of the original reads analyzed by the proprietary
tool (Fig. 6B).

Interpretation of long-read sequencing reads
Long-read sequencing (40) has also thrived in the development of
new experiments, such as full plasmid sequencing, currently replac-
ing Sanger sequencing, and the construction of a barcoded deep
mutational scanning (DMS) library (41, 42). To demonstrate IN-
TERSTELLAR for the interpretation of long-read sequencing
reads, we applied INTERSTELLAR to analyze a PacBio sequencing
dataset that was previously prepared to identify a barcoded DMS
library of MSH2 variants (42). In the original work, 242 variants
of 2928-bp MSH2 gene were synthesized and cloned together
with 13-bp random DNA barcodes, and yeast strains with the
variant expressing vectors were pooled to assess growth effect,
where the strain enrichment was measured by high-quality Illumina
sequencing only targeting the short barcode regions. To identify
barcode sequences corresponding to each variant, AssemblyByPac-
Bio (ABP) (43) was used to align the reads to the reference sequence
to identify both variants and barcodes (Fig. 7A). Last, PacRAT (44)
was used to identify and correct barcodes that are uniquely assigned
to variants in the allowlist.

We replaced the segment sequence identification process by ABP
with INTERSTELLAR, where 20-bp upstream and downstream se-
quences of the barcode andMSH2-coding region were simply iden-
tified in the reads using regular expression to extract their respective

inner regions (Fig. 7B). The read count distribution of unique
barcode species identified both by ABP and INTERSTELLAR
were markedly higher than those identified by one of them
(Fig. 7C). However, INTERSTELLAR identified substantially
more barcodes that are almost inclusive of those identified by
ABP (Fig. 7D, top half ). The barcode species identified by both
pipelines were linked to more variants in the allowlist and more en-
riched for the expected length of 2928 bp than the others. When the
same analysis was limited to barcode species identified by either
pipeline with a barcode count of two or more, the agreement
between ABP- and INTERSTELLAR-identified barcodes and the
enrichment of barcodes linked to variants in the allowlist were
both elevated as expected (Fig. 7D, bottom half ). The DMS assay
part adopts this barcode-variant cross-reference table and measures
only barcode abundances in a screening condition using high-
quality short-read sequencing to assess their associated variant
effects. Because barcodes in the table that are not shown in the
screening are ignored, false-positive barcodes identified from the
long-read sequencing would not be a problem. Accordingly, we
suggest that the use of INTERSTELLAR in the generation of the
cross-reference table could only increase the sensitivity of the
DMS assay without decreasing the assay sensitivity.

DISCUSSION
The structure of any sequencing library is always designed by stip-
ulating information to be encoded in the DNA sequence with posi-
tions of sequence segments or by sectioning them using constant
marker sequences (otherwise the library cannot be analyzed after
sequencing). After any assay followed by sequencing of the
library, sequence segments are extracted and error-corrected for
downstream analyses. INTERSTELLAR has full capacity to
decode any of these reads with the flexible regular expression
system and the parental-local associations of values encoded in
the sequence segments.

We performed read translations and data analyses using differ-
ent software tools for scATAC-seq, scRNA-seq, and spatial tran-
scriptomics reads and compared the results with those from the
original reads analyzed by the original proprietary software tools.
Although the overall results were markedly similar between the
original and emulated results, there were different levels of the var-
iances observed. The differences in the results can be explained by
three potential sources: (i) the read interpretation process, (ii) the
destination segment assignment process, and (iii) differences in
the value analysis processes between different software tools,
where INTERSTELLAR is responsible for the first two. From the
scRNA-seq read translation demonstrations, the error correction
step of the read interpretation process was suggested to be a poten-
tial major source of the variance seen, in which the error correction
of the read interpretation was likely to make the error correction
steps implemented in different software tools ineffective (i.e., over-
riding of the error correction strategy by INTERSTELLAR). Al-
though the Levenshtein distance metric is the default for the
non–allowlist-based error correction of INTERSTELLAR, and this
is practically not an issue for most sequencing read data analyses, it
can be replaced with Bartender or a user-developed plugin. The des-
tination segment sequence assignment process is the only potential
source of the loss of information encoded in the source reads when
the information capacity (or representativity) of a destination
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segment is less than that of the corresponding source segment. To
address this issue, we implemented theoretically the best value space
optimization strategy that uses the user-defined information of pa-
rental-local segment allocations and successfully demonstrated that
the information loss could be minimal for the read translations with
a reduction in sequence representativity.

In the last couple of decades, beyond the (epi)genomic and tran-
scriptomic analyses of clinical samples and various species, applica-
tions of massively parallel short-read sequencing technologies have
enabled the development of wide-ranging biological assays, and the
field continues to expand rapidly. While it has been a practice to
develop and combine proprietary sequencing read interpreters
and data analysis pipelines with the development of new sequenc-
ing-based assays, we propose a shift to a next form, where the com-
munity uses a common sequencing read interpretation and
translation platform, such as INTERSTELLAR, and develops only
the data analysis parts and shares them separately for the best utili-
zation of data processing resources.

MATERIALS AND METHODS
Datasets
scATAC-seq, scRNA-seq, spatial transcriptomics, and MSH2 DMS
datasets obtained for this study are listed in table S2. For the sci-
ATAC-seq dataset, we found only FASTQ files where cell IDs are
recorded in the header line of each entry. Therefore, we generated
new FASTQ files such that each sequencing read entry encoded the
cell ID with per baseQ scores of 30. Similarly, for the Slide-seq data-
sets, we extracted positional barcodes, UMIs, and cDNA sequences
from the available BAM files and regenerated FASTQ files by setting
the per base Q scores of positional barcodes and UMIs to 37. Q
scores for the cDNA sequences were inherited from the BAM files.

Preparation of barcoded plasmids for RCP-PCR
In BFG-Y2H (9), the structures of DB-X and AD-Y barcode cas-
settes are 5′-loxP′-U1-Uptag-U2-lox2272-D1-Dntag-D2-3′ and 5′-
U1-Uptag-U2-loxP′-D1-Dntag-D2-lox2272-3′, respectively, where
U1, U2, D1, and D2 are common PCR amplification handles spe-
cific to DB-X barcodes or AD-Y barcodes, Uptag and Dntag are
unique IDs assigned to a specific protein X- or Y-encoding gene
fused to the respective Y2H domains (DB or AD), and loxP′
(reverse complement of loxP) and lox2272 are site-specific Cre re-
combination sites (Fig. 2B). In this study, DB-X and AD-Y barcode

Fig. 6. Translation ofmultimodal scRNA-seq reads. (A) Read structures of sci-Space. (B) Two-dimensional UMAP embeddings of cells and the spatial distributions of cell
states for the original sci-Space data (top) and the translated data analyzed by 10x Cell Ranger (bottom). The cell state clusters are color coded according to their gene
expression profile clusters identified independently in each analysis.
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plasmids were respectively constructed from pDN0510 and
pDN0509 (45) by assembling BFG-Y2H DB-X and AD-Y barcode
fragment pools (9) by three-fragment Gibson DNA assembly (46) as
follows: DB-X Uptag and Dntag fragment pools were amplified
using the random barcode templates DB-BC-UP and DB-BC-DN,
with the primer pairs DB-BC-UP_F/DB-BC-UP_R and DB-BC-
DN_F/DB-BC-DN_R, respectively. Similarly, AD-Y Uptag and
Dntag fragment pools were amplified using the random barcode
templates AD-BC-UP and AD-BC-DN, with the primer pairs
AD-BC-UP_F/AD-BC-UP_R and AD-BC-DN_F/AD-BC-DN_R,
respectively. Each PCR was performed in a 35-μl volume, including
3.6 μl of 10 pM template, 0.7 μl each of 10 μM primers, 0.2 μl of
Phusion DNA polymerase, 7 μl of 5× Phusion HF detergent-free
buffer (Thermo Fisher Scientific, F520L), and 0.28 μl of 25 mM de-
oxynucleoside triphosphates (dNTPs) with the following thermal
cycler conditions: 98°C for 30 s, five cycles of 98°C for 10 s, 65°C
for 10 s, and 72°C for 10 s, and then 24 cycles of 98°C for 10 s
and 72°C for 10 s, followed by 72°C for 5 min for the final extension.

The pDN0509 and pDN0510 backbones were linearized by PI-Psp I
[New England Biolabs (NEB)] following the manufacturer ’s in-
struction. Each Gibson DNA assembly of the Uptag pool, Dntag
pool, and linearized backbone was performed in a total of 20-μl
volume with 25 fmol of each of the backbone and barcode frag-
ments. The reaction was incubated at 50°C for 1 hour, and 1 μl
was used to transform 50 μl of One Shot ccdB Survival 2 T1R Com-
petent Cells (Thermo Fisher Scientific, A16460) according to the
manufacturer ’s instructions. The transformation samples were
spread on 245 mm × 245 mm square LB + ampicillin plates and in-
cubated overnight at 37°C for colony isolation. Single colonies were
picked by QPix 450 robot (Molecular Devices) and arrayed into
384-well plates with liquid LB + ampicillin media. Oligonucleotides
used in this protocol are listed in table S3.

RCP-PCR
To identify the clonal barcodes with high-quality base calling with a
short paired-end sequencing, two different RCP-PCRs are

Fig. 7. Interpretation of long-read sequencing reads. (A) Read segmentation strategy by AssemblyByPacBio (ABP). (B) Read segmentation by INTERSTELLAR. In the ABP
workflow, the sequencing reads are first aligned to the reference sequence. TheMSH2 variants and barcodes are then extracted on the basis of their positions aligned to
the reference. When INTERSTELLARwas used, we extracted coding variant and barcode segments by simply identifying their 20-bp upstream and downstream sequences
with fuzzy matching (3-bp perfect match for the inner edge and up to twomismatches for the remaining 17-bp region). (C) Read count distribution of barcodes identified
by INTERSTELLAR (top) and ABP (bottom). (D) Left: Venn diagrams for barcode species detected by the two workflows. Top diagram: With no read count threshold for
identified barcode species. Bottom diagram: With a read count threshold of two or more. Middle: Proportion of barcodes whose MSH2 variants detected by each cor-
responding tool were involved in the allowlist. Right: Length distribution of coding variant segments identified by each corresponding tool.
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performed against the same samples. In brief, DB-Tag RCP-PCR
and DB-Lox RCP-PCR respectively identify 5′-U1-Uptag-U2-
lox2272-D1-Dntag-D2-3′ and 5′-loxP′-U1-Uptag-U2-lox2272-D1-
3′ regions of the same sample wells, and AD-Tag RCP-PCR and
AD-Lox RCP-PCR, respectively, identify 5′-U1-Uptag-U2-loxP′-
D1-Dntag-D2-3′ and 5′-U2-loxP′-D1-Dntag-D2-lox2272-3′
regions of the same sample wells (Fig. 2B). The first RC-PCRs for
DB-Tag, DB-Lox, AD-Tag, and AD-Lox fragments were performed
with the primer sets encoding row or column IDs (table S3). Each
RC-PCR was performed in 10 μl of volume, including 4 μl of 16-fold
diluted overnight culture as templates, 1 μl each of 2 μM primers, 0.2
μl of Phusion DNA polymerase, 2 μl of 5× Phusion HF buffer
(NEB), and 0.08 μl of 25 mM dNTPs. The thermal cycler conditions
for DB- and AD-Tag RC-PCRs were: 95°C for 3 min, 30 cycles of
95°C for 10 s, 63°C for 10 s, and 72°C for 15 s, and then 72°C for 5
min for the final extension. The conditions for DB- and AD-Lox
RC-PCRs were: 95°C for 3 min, 30 cycles of 95°C for 10 s, 66°C
for 10 s, and 72°C for 15 s, and then 72°C for 5 min for the final
extension. (Note that 4× 96-well PCRs were performed for each
384-well template sample plate for better sample handling.) The
RC-PCR products were pooled by plates and purified using Fast-
Gene PCR purification kit (Nippon Genetics) and subjected to
plate PCR (P-PCR) using custom indexed primers for Illumina
library preparation listed in table S3. Each P-PCR was performed
in a 40-μl volume including 2× Phusion High-Fidelity PCR
Master Mix (NEB), 1 μl each of 10 μM forward and reverse plate
primers, and 1 ng of size selected RC-PCR product with the follow-
ing thermal cycler condition: 98°C for 30 s; 15 cycles of 98°C for 10
s, 60°C for 10 s, and 72°C for 1 min; and then 72°C for 5 min for the
final extension. The P-PCR products were pooled and quantified by
quantitative PCR using the KAPA Illumina Library Quantification
Kit (Kapa Biosystems) and sequenced by MiSeq (Illumina, 2× 250-
bp paired-end sequencing).

Interpretation of RCP-PCR reads
Using INTERSTELLAR, we identified Uptag, Dntag, loxP, and/or
lox2272 segments of DB-Tag, DB-Lox, AD-Tag, and AD-Lox
reads with RBCs, CBCs, and PBCs. We discarded any segment se-
quences whose average Q scores were below 20 or whose minimum
per base Q scores were below 10. P5 PBCs, P7 PBCs, RBCs, and
CBCs were error-corrected using the allowlists with a maximum
Levenshtein distance threshold of 1. The process configuration
file of INTERSTELLAR is available at https://github.com/
yachielab/Interstellar/blob/main/config/fig2_RCPPCR/rcppcr.conf
or https://doi.org/10.5281/zenodo.7250991.

Identification of high-quality clonal barcode cassettes
To determine sample wells containing clonal barcode cassettes, we
analyzed the RCP-PCR data interpreted by INTERSTELLAR with
the following criteria. For each well, we first determined the most
dominant Uptag and Dntag in the Tag RCP-PCR result. If the oc-
cupancies of the most frequent tags were both above 50%, then the
Uptag and Dntag were regarded as clonal in the well. The validities
of loxP and lox2272 were separately evaluated using the reads from
the Lox RCP-PCR, with the criterion of 70% or more reads encod-
ing the correct sequences. Because DB- and AD-Lox RCP-PCR
reads, respectively, encode Uptags and Dntags, we also determined
the most dominant Uptag or Dntag from the Lox RCP-PCR reads of
each well with the same criterion used to call the clonal Uptags and

Dntags from the Tag RCP-PCR reads. Last, wells with single dom-
inant Uptag and Dntag pairs, valid loxP and lox2272 sequences, and
no conflict in Uptag or Dntag between Tag and Lox
RCP-PCRs was called to contain high-quality clonal barcode cas-
settes. The Python script for this process is available at
https://github.com/yachielab/Interstellar/blob/main/utils/analyze_
rcppcr.py or https://doi.org/10.5281/zenodo.7250991. For valida-
tion, we randomly selected 24 wells of predicted clonal barcode cas-
settes, cultured the corresponding bacterial samples overnight in
LB + ampicillin media at 37°C, extracted plasmids using FastGene
plasmid kit (Nippon Genetics), and performed Sanger sequencing
with Term-Rvs primer (table S3).

Translation of sci-ATAC-seq reads
Using INTERSTELLAR, we identified four combinatorial cell IDs
and a genomic DNA region of each sci-ATAC-seq read combination
and translated them into the read structure of 10x scATAC-seq. We
discarded any read containing genomic DNA segments whose
average Q scores were below 20 or whose minimum per base Q
scores were below 5. Cell IDs in the source reads were error-correct-
ed with the maximum Levenshtein distance threshold of 1 using a
position-specific cell ID allowlist. Each combination of cell
IDs was translated into a 16-bp barcode selected from
the cell ID allowlist of 10x Chromium scATAC-seq.
The process configuration file of INTERSTELLAR is available at
https://github.com/yachielab/Interstellar/blob/main/config/fig3_
sciATAC/sciATAC_to_10xATAC.conf or https://doi.org/10.5281/
zenodo.7250991.

scATAC-seq data analysis
We first analyzed the sci-ATAC-seq reads of Drosophila single cells
for 6 to 8 hours after egg laying (GSE101581) by using 10x Cell
Ranger ATAC (version 1.2.0) with read translation using INTER-
STELLAR. FlyBase version R6.25 and Ensemble BDGP6.95 were
used as a reference genome and for genomic annotation, respective-
ly, to obtain a genomic accessibility count matrix. For comparison,
we obtained the original raw genomic accessibility count matrix [2–
kilo–base pair (kbp) bins across the genome; GSE101581] produced
in the original study. Following the workflow used in the original
study, cells with the lowest 10% read counts were discarded, result-
ing in 7092 cells. Furthermore, the genomic accessibility count
matrix was limited to the top 20,000 2-kbp bins of frequently
mapped reads across cells for the subsequent steps. After obtaining
the genomic accessibility count matrix from the translated 10x
scATAC-seq reads using Cell Ranger ATAC, the following analyses
were limited to the 7092 cells observed in both matrices. Both
genomic accessibility count matrices were processed by Signac
version 1.0.0 (47). For each matrix, accessibility count normaliza-
tion was performed by RunTFIDF(), and the normalized matrix
was processed by RunSVD() for low-dimensional data projections
by singular value decomposition (SVD). After identifying the top 30
LSI components, LSIs correlated with single-cell read depth with
Pearson’s R of more than 0.5 were removed (LSI components 1
and 4 and components 1 and 5 were removed from the original
and translated datasets, respectively). The remaining 28 LSI compo-
nents were used for UMAP embedding of the data using
RunUMAP() to identify cell clusters using k-nearest neighbor
(kNN) clustering by FindNeighbors() and FindClusters() with a
resolution parameter of 1. We also analyzed the sci-ATAC-seq
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reads ofDrosophila single cells for all of the available developmental
stages in the same study (2 to 4, 6 to 8, and 10 to 12 hours after egg
laying) by using Cell Ranger ATAC with read translation. The data
analyses by Cell Ranger ATAC were first independently performed
for three stage-specific samples—each sample with the same refer-
ence genome and genomic annotation. We aggregated the genomic
accessibility count matrices from all samples into a single matrix
using Cell Ranger ATAC and analyzed it by Signac. Low-quality
cells were discarded according to the instruction of Signac; the nu-
cleosome signal scores and transcription start site (TSS) enrichment
scores of cells were computed by NucleosomeSignal() and TSSEn-
richment(), respectively, and cells with nucleosome signal scores of
<2, TSS enrichment score of >2, and % reads mapped to identified
accessibility peaks of >40 were retained. Furthermore, identified ac-
cessibility peaks with 200 to 100,000 mapped reads across retained
single cells were used to construct the high-quality genomic acces-
sibility count matrix, followed by read count normalization and
low-dimensional data projection as described above.

Comparison of the original and translated high-
dimensional datasets
To compare two high-dimensional count matrices obtained by ap-
plying different data processing methods to the same scATAC-seq,
scRNA-seq, or spatial transcriptome read dataset, we adopted the
following metric. First, 50,000 pairs of high-dimensional data
points (e.g., transcriptome profiles of single cells or spatial posi-
tions) were randomly sampled, and their Euclidean distances in
the two datasets were compared. Furthermore, to quantitatively
evaluate the similarity of the two datasets in a nonparametric
manner, we defined the rank difference ∆Ri,j of the same high-di-
mensional data pairs (i, j ) between the two datasets as follows and
evaluated their distribution compared to that obtained from two
data pairs each independently sampled from the two datasets

Di;j ¼j Rði; jÞ � Rði0; j0Þ j

where i and j are randomly sampled high-dimensional data points
in a set ⊖ (i,j ∈ ⊖), i′ and j′ are the corresponding data points in a
projected (translated) set ⊖′ (i′,j′ ∈ ⊖′), and R(x,y) represents the
rank of Euclidean distance of x and y (x,y ∈ X ).

Translation of scRNA-seq reads
10x Chromium V3 scRNA-seq, Drop-seq, Quartz-Seq2 v3.1, and
SPLiT-seq reads were analyzed by INTERSTELLAR to identify
their cell ID(s), UMI, and cDNA sequence segments. We discarded
sequencing reads with any segment whose average Q score was
below 20 or whose minimum per base Q score was below 5. The
cell IDs of Drop-seq reads were corrected by the imputation-to-ma-
jority correction with the maximum Levenshtein distance threshold
of 1. For 10x Chromium V3, Quartz-Seq2 and SPLiT-seq reads, the
cell IDs were corrected using allowlists with the maximum Levensh-
tein distance threshold of 1. In the read translation for Cell Ranger,
the cell ID values and UMI values were assigned to sequence seg-
ments selected from the whitelist of 10x Chromium V3 and 12-bp
random sequence segments, respectively. In the read translation for
dropseq-tools, the cell ID and UMI values were assigned to 12- and
8-bp random sequence segments, respectively. We listed the
runtime information of the read translation from each technology
into 10x Chromium read structure in table S4. For the UMI

bequeathing strategy, the source UMI sequences were elongated
by A nucleotides to adjust the UMI lengths if necessary. For the
round-trip conversion of the four scRNA-seq dataset, we translated
the original read datasets into a hypothetical read structure of a
smaller information capacity with 11-bp cell ID and 7-bp UMI
and translated them back to the original read structure. The
process configuration files of INTERSTELLAR are available at
https://github.com/yachielab/Interstellar/tree/main/config or
https://doi.org/10.5281/zenodo.7250991.

scRNA-seq data analysis
We translated scRNA-seq read datasets of 10x Chromium V3
scRNA-seq, Drop-seq, Quartz-Seq2 v3.1, and SPLiT-seq and ana-
lyzed them by 10x Cell Ranger (version 3.0.2) and dropseq-tools
(version 2.3.0). For comparison, we also analyzed the original
read datasets by their proprietary software tools [i.e., 10x Cell
Ranger, dropseq-tools, Quartz-Seq pipeline, and split-seq-pipeline
(commit c3923ea), respectively]. The mouse reference genome
GRCm38 was commonly used throughout these analyses. In the
analysis of both the original SPLiT-seq read dataset and those trans-
lated and analyzed by the other two software tools, cDNA segments
mapped to intronic regions were also accounted for to estimate gene
expression. Gene expression count matrices obtained from the orig-
inal software tools were processed to filter out low-quality cells with
the following criteria using Seurat version 3.2.0 (48). For those from
10x Cell Ranger, dropseq-tools, and Quartz-Seq pipeline, we
removed cells whose numbers of detected genes were ≤200
or ≥2500 or whose UMI proportion from mitochondrial genes
was ≥20%. For the original gene expression matrix of SPLiT-seq ob-
tained by split-seq-pipeline, we removed cells whose numbers of de-
tected genes were ≤250 or ≥2500 or UMI proportion from
mitochondrial genes was ≥5%, considering the expectation of low
mitochondrial reads in the single-nucleus RNA-seq. Last, cells com-
monly observed in the gene expression matrices obtained by the
original software tool, 10x Cell Ranger and dropseq-tools, were re-
tained, yielding 5003, 11,334, 1048, and 185,722 cells for ones
sourced from the original 10x Chromium V3, Drop-seq, Quartz-
Seq2, and SPLiT-seq datasets, respectively. Using Seurat, all of the
filtered gene expression matrices were then processed by Normal-
izeData() with a scale factor of 10,000 and ScaleData(), followed by
the extraction of the top 5000 highly variable genes by FindVaria-
bleFeatures() for principal components analysis (PCA) by
RunPCA(). Using the top 20 principal components, we carried
out two-dimensional UMAP embedding and kNN clustering of
each dataset by RunUMAP(), FindNeighbors(), and FindClusters()
with a resolution parameter of 0.6.

Highly complex round-trip conversion
We simulated a sequencing read pool of a highly complex hypothet-
ical read structure from a total of four 10x Chromium V3 scRNA-
seq read datasets (two heart and two neural samples) obtained from
the 10x Genomics website. Because these datasets had already been
demultiplexed, we provided simulated Illumina i5 and i7 index
reads in addition to each paired-end read entry for cell ID plus
UMI and cDNA. The i5 indices were provided to discriminate in-
dividual FASTQ datasets, and the i7 indices were provided to indi-
cate the sample type (heart or neural), in which they could serve as
parental sequence segments of their associated i5 indices. The se-
quencing read datasets were pooled and interpreted by
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INTERSTELLAR as described above. The interpreted reads were
then translated into a destination read structure with value space
optimization, where 15-bp i7 index, 10-bp i5 index, 16-bp cell ID,
and 12-bp UMI segment sequences were translated into arbitrarily
designed three 2-bp units, four 3-bp units, five 4-bp units (each unit
was limited to a selection from ten 4-bp sequences in an allowlist),
and five 2-bp units, respectively. Last, the simulated reads were
translated back to the read structure of 10x Chromium V3. The
original and round-trip reads were both analyzed by
10x Cell Ranger. The gene expression matrices were derived by
the same criteria described above. The process configuration file
of INTERSTELLAR is available at https://github.com/yachielab/
Interstellar/tree/main/config/figS4_10X_roundtrip or https://doi.
org/10.5281/zenodo.7250991.

Translation of spatial transcriptomics reads
Using INTERSTELLAR, we analyzed Slide-seq reads and identified
their positional barcodes, UMIs, and cDNA fragments. We discard-
ed sequencing reads with any segment whose average Q score was
below 20 or minimum per base Q score was below 5 and reads
whose positional barcodes were not found in the allowlist with
the perfect match. After obtaining a sequence conversion table
between positional barcodes of a Slide-seq slide and those of mul-
tiple 10x Genomics Visium slide tiles, reads were grouped by desti-
nation Visium tile. For each Visium tile group, we translated the
reads into the Visium read structure using INTERSTELLAR with
the UMI bequeathing strategy, where the segment length is adjusted
by adding A nucleotides. The process configuration file of INTER-
STELLAR is available at https://github.com/yachielab/Interstellar/
blob/main/config/fig5_Slide-seq/Slide_to_10xVisium.conf or
https://doi.org/10.5281/zenodo.7250991. The resulting FASTQ
files of Visium tiles were independently processed by 10x Genomics
Space Ranger (version 1.0.0) with the options “--slide = V19L01-041
--area = C1” using a fake slide image (https://github.com/yachielab/
Interstellar/blob/main/utils/fake_spaceranger_box.jpeg or https://
doi.org/10.5281/zenodo.7250991) such that whole Visium spots
were recognized to be covered by a tissue sample and processed.
For each Slide-seq tissue sample, the Space Ranger results of multi-
ple tiles were merged and analyzed by Seurat version 3.2.0 to obtain
a single gene expression count matrix of spatial positions, with the
same protocol applied for the scRNA-seq data analyses above,
except that the top 3000 highly variable genes were used for PCA
and the top 30 principal components were used for UMAP embed-
ding and kNN clustering.

Translation and analysis of sci-Space data
Using INTERSTELLAR, we analyzed sci-Space reads of slide IDs 7
to 14 listed in table S2, identified their cell ID and UMI segments,
and translated the reads into a single pair of FASTQ files for 10x Cell
Ranger with the UMI bequeathing strategy. The process
configuration file is available at https://github.com/yachielab/
Interstellar/blob/main/config/fig6_sci-Space/sciSpace.conf or
https://doi.org/10.5281/zenodo.7250991. After analyzing the trans-
lated reads by Cell Ranger, we processed the expression matrices ob-
tained from the original pipeline (https://ftp.ncbi.nlm.nih.gov/geo/
series/GSE166nnn/GSE166692/suppl/GSE166692_sciSpace_
count_matrix.mtx.gz) and Cell Ranger with the same criteria used
for the scRNA-seq analysis above. From each dataset, we indepen-
dently performed kNN clustering and obtained cell state labels. Cell

state occupancies in each spot were plotted as pie charts using an R
package scatterpie v0.1.7 (https://github.com/GuangchuangYu/
scatterpie) based on the coordinate information of cells from the
original study (https://ftp.ncbi.nlm.nih.gov/geo/series/
GSE166nnn/GSE166692/suppl/GSE166692_sciSpace_cell_
metadata.tsv.gz).

Interpretation of MSH2 DMS reads
The MSH2 DMS long-read sequencing reads were independently
processed by ABP and INTERSTELLAR. When ABP is used, the
reads were first aligned to the reference sequence (FASTA file)
using BWA-MEM (49) with options “-M -L 80”, and the alignment
results output in a BAM file were sorted using SAMtools (50). We
then used extractBarcodeInsertPairs.py with options “-l 13 -p 6558
--start 3377 --end 6306” to extract the coding variant and barcode
regions with their quality scores, followed by the extraction of
barcode-variant combinations using unifyAssignment.py. The
Python scripts were obtained from https://github.com/
shendurelab/AssemblyByPacBio/ (commit 0cb2d1d). In parallel,
using INTERSTELLAR, we extracted coding variant and barcode
segments by identifying their 20-bp upstream and downstream se-
quences with fuzzy matching (3-bp perfect match for the
inner edge and up to two mismatches for the remaining 17-bp
region). The process configuration file of INTERSTELLAR is avail-
able at https://github.com/yachielab/Interstellar/blob/main/config/
fig7_MSH2_DMS/MSH2.conf or https://doi.org/10.5281/zenodo.
7250991. We generated a sequence-quality score table for extracted
barcodes following the format produced by extractBarcodeInsert-
Pairs.py and used unifyAssignment.py to obtain a barcode-variant
table. The barcode-variant tables generated by ABP and INTER-
STELLAR were subjected to PacRAT (44) to correct the variant se-
quences for each barcode.

Statistical analysis
The Euclidean distance correlations in high-dimensional data space
between the original and translated results were all measured by
Pearson’s correlation. The statistical tests to compare the rank dif-
ference distributions to random expectations were performed by the
two-sided Wilcoxon rank sum test.

Supplementary Materials
This PDF file includes:
Figs. S1 to S4

Other Supplementary Material for this
manuscript includes the following:
Tables S1 to S4
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