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ScienceDirect
While current omics and single cell technologies have enabled

measurements of high-resolution molecular snapshots of cells

at a large scale, these technologies all require destruction of

samples and prevent us from analyzing dynamic changes in

molecular profiles, phenotypes, and behaviors of individual cells

in a complex system. One possible direction to overcome this

issue is the development of a cell-embedded ‘event recorder’

system, whereby molecular and phenotypic information of a cell

(s) can be obtained at the time of observation with their past

event information stored in ‘heritable polymers’ of the same cell.

This concept has been demonstrated by many synthetic cellular

circuits that monitor and transmit a certain set of environmental

and intracellular signals into DNA, and have now been further

accelerated by recent CRISPR-related technologies. Notably,

the discovery of the RT-Cas1–Cas2 system, which acquires

sequences of cellular transcripts into a specific host genomic

region, has enabled recording of a broader range of molecular

profile histories in the DNA tapes of cells, to understand the

dynamics of complex biological processes that cannot be

addressed by current technologies.
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Introduction
Massively parallel sequencing and mass spectrometry tech-

nologies obtain various types of cellular information, such as
Current Opinion in Chemical Biology 2019, 52:54–62 
chromatin structures and transcriptomic, proteomic and

metabolomic profiles, as well as post-transcriptional and

post-translational modifications at a large scale. While these

technologies have uncovered how different biological

systems dynamically change their ‘average’ molecular

landscapes, recent single cell technologies have identified

many unknown but distinct types of cells in multicellular

organisms. Cells with different molecular phenotypes

dynamically emerge and orchestrate in the progression

and homeostasis of tissues, organs, and individuals. There-

fore, it is extremely important to monitor how different

single cells (or clones) in such systems change their molecu-

lar profiles and interact with others. However, high content

molecular analyses of cells using current omics technologies

require destruction of samples and preclude performing

time course analysis of the same biological objects. For

example, it is extremely difficult to analyze how a given

blood cell clone of a mouse changes its molecular profiles

throughout the hematopoietic differentiation process.

Live cell imaging is capable of analyzing spatiotemporal

dynamics of molecules and cells with fluorescent proteins

or probes, but only for a limited number of objects, which can

be observed by microscopy (Figure 1a). Although single cell

technologies coupled with molecular barcoding of cells may

be a potential solution to obtain transcriptomic and (epi-)

genomicinformationofthesamecellclones(or ‘closerelative’

cells) across time course samples, the scalabilities of current

single cell technologies are up to the order of 105 cells per

sample, limiting the detection sensitivity to capture the same

barcoded cells across different samples (Figure 1b). Because

of its high information capacity, physical density, durability,

and ease of duplication, DNA has been proposed to store

artificial information [1], and several high capacity DNA data

storage methods have been accomplished [2–5]. In synthetic

biology, there is the concept of recording environmental and

intracellular events in DNA that replicates with cell division

such that the previous event histories of cells can be obtained

from the DNA media with other high content omics infor-

mation at the time of observation (Figure 1c). Although none

of the current synthetic circuits have yet succeeded to record

high content, time course event information in cellular DNA

to address practical biological issues, the methodologies har-

nessing DNA recombination and CRISPR genome editing

have been rapidly heading toward this goal.

Synthetic event recording using DNA
recombination
To transmit extracellular event signals to permanent

alterations of a DNA sequence, site-specific DNA
www.sciencedirect.com
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Different types of methods to analyze dynamic changes in molecular profiles of the same cells or clones. (a) Live cell imaging enables direct

observation of progressing cell populations by labeling target molecules with fluorescent markers, but only for a limited number of objects that can

be observed under a microscope. (b) Single cell transcriptome sequencing (scRNA-seq or single cell RNA sequencing) of barcoded cells enables

analysis of dynamic changes in transcriptome profiles. Cells in an initial population are uniquely tagged with DNA barcodes that can be identified

by an scRNA-seq pipeline. Clonal dynamics of transcriptomes can be observed for clones which barcodes can be observed across different time

course scRNA-seq data. (c) The DNA event recorder concept. Each cell in a complex sample (e.g. a whole mouse body) involves a DNA event

recorder system that sequentially records cellular and environmental event information in a DNA tape. The past event history information of cells

can be derived from their DNA tapes with their high content omics profiles at the time of observation.
recombinases, such as Cre, Flp, PhiC31, and Bxb1, have

been widely used with signal-inducible gene expression

promoters. In the simplest case, upon exposure to a

specific signal, a site-specific DNA recombinase is

induced in cells to delete or flip a given DNA sequence

sandwiched by two recombination sites, which can be

then readout, for example, by sequencing or as a restora-

tion of fluorescent gene expression. Extensive efforts

have been made to screen orthogonal sets of recombi-

nase-target site pairs, and to build more complex signal-

dependent circuits by concatenating multiple different

recombination sites and various promoters and termina-

tors [6–10,11��,12]. Examples include circuits that can

count the number of extracellular stimuli [6], circuits that

exhibit specific responses depending on the order of

different stimuli [7], and various logic gate repertoires,

such as AND and OR gates as well as NAND, NOR,
www.sciencedirect.com 
XNOR, and others [8,9]. Another study has also reported

establishment of stringent band-path filters for precision

computation using multiple signal inputs [10]. While

most of these circuits have been demonstrated in Escher-
ichia coli cells, BLADE (Boolean logic and arithmetic

through DNA excision) [11��] enables flexible construc-

tion of various circuits in mammalian cells, which has

succeeded to construct 109 two-input, two-output circuits

in human embryonic kidney and Jurkat T cells; three-

input, two-output circuits; a six-input, one-output circuit;

and circuits that incorporate CRISPR–Cas9 to regulate

endogenous genes.

In contrast to the fast-reacting DNA recombinase-based

methods with limited scalability owing to the number of

available recombinase enzymes as ‘DNA writer’ modules,

another scalable and slow-reacting method, SCRIBE
Current Opinion in Chemical Biology 2019, 52:54–62
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(synthetic cellular recorders integrating biological event),

has been developed using bacterial retron and recombi-

neering technologies, which might be suitable to record

long-term histories of cells [13�]. In this system, an

engineered retron system is employed, whereby a chemi-

cal stimulus causes an arbitrary sequence harbored

by common moiety sequences that form a specific

RNA secondary structure to be transcribed and reverse

transcribed by an RT enzyme. Thus produced single-

stranded DNA (ssDNA) is then recombined with a target

DNA by homologous recombination enhanced by Beta

recombinase (from bacteriophage l). SCRIBE has been

demonstrated to successfully trace long-term exposure

patterns of multiple compounds in E. coli. The scalability

of SCRIBE is high because orthogonal retron-target DNA

pairs can be freely designed by changing their donor

ssDNA sequences and target sites. Although the retron

system is originated from a bacterial species, it is known

to be also active in yeast [14] and mammalian cells [15].

Moreover, by harnessing CRISPR–Cas9 and the yeast

retron technology, CRISPEY (Cas9 retron precise parallel

editing via homology) has been established as a highly

efficient single base pair genome editing method in yeast

[16], showing the potential of SCRIBE-type event record-

ing in other eukaryotic cells.

CRISPR–Cas9 as a DNA writer module
Recently, CRISPR-related systems have started to

be employed for the DNA event recording concept. The

CRISPR–Cas system is a prokaryotic adaptive immune

system in which DNA sequences of foreign plasmids and

phages are immunized into a genomic CRISPR (clustered

regularly interspaced short palindromic repeats) locus.

Upon second exposure to the same invaders, crRNAs

(CRISPR RNAs) transcribed from the immunized

CRISPR locus recruit a Cas (CRISPR-associated) pro-

tein(s) to the target DNA molecules via sequence comple-

mentarity and digest them by the DNA cleavage activity of

Cas protein(s). Among the different types of CRISPR–Cas

immunity response systems, Cas9 from the type II-A

CRISPR system has been widely used for genome editing

[17,18]. While a trans-activating crRNA (tracrRNA) is also

required to form a secondary structure with crRNA to

activate Cas9 at the target locus, a synthetic crRNA-

tracrRNA fusion, hereafter referred to as guide RNA

(gRNA) [19], is commonly used in practical genome edit-

ing. In summary, CRISPR–Cas9genomeediting is a simple

two component system in which Cas9 with a double-

stranded DNA cleavage activity is recruited by gRNA to

a target DNA region containing a protospacer adjacent

motif (PAM) in its 30-end. PAM is necessary for target

recognition by Cas9, conferring the distinction of the

foreign target DNA and host crRNA-encoding region both

having the same sequence. Because DNA double-strand

breaks induce various DNA repair pathways, such as non-

homologous end joining (NHEJ) and homologous recom-

bination (HR), CRISPR–Cas9 has been used to enhance
Current Opinion in Chemical Biology 2019, 52:54–62 
gene knockout and knock-in efficiencies in model and non-

model organisms.

Nuclease-deficient Cas9 (dCas9) and nickase Cas9

(nCas9) mutants can be tethered to various effector

protein modules (e.g. transcription activation complexes

and epigenetic modifiers) to enable synthetic control of

target gene expression, epigenetic modifications, and

chromatin structures [20,21]. Unlike previous synthetic

biology methods, this strategy allows flexible construction

of various synthetic circuits with minimal genetic engi-

neering effort in various organisms. Furthermore,

base editing technologies have been developed by fusing

Cas9 mutants to nucleoside-modifying enzymes, which

enables direct substitution of target nucleotides [22–24].

Among such technologies, fusing activation-induced cyti-

dine deaminase (AID) and uracil glycosylase inhibitor

(UGI) to nCas9 (or dCas9), highly efficient cytidine base

editors for targeted C:G-to-T:A editing has been devel-

oped and improved by many groups [22,23,25–27]

(Figure 2a). In such targeted single base editing, gRNA

recruits AID and UGI to a target locus via nCas9 (or

dCas9). AID converts cytidines in the target region to

uridines by deamination; and UGI blocks the glycosyla-

tion-initiated base excision repair pathway and enhances

the conversion of the uracil bases to thymine bases

through DNA replication [28]. While various applications

of base editors have been proposed, such as in vivo
correction and creation of disease mutations [29–31],

several studies have also used them to construct DNA

event recorder circuits in cells.

Molecular event recording using CRISPR–
Cas9
Among the DNA event recording circuits based on

CRISPR–Cas9, mSCRIBE (mammalian synthetic cellu-

lar recorder integrating biological events) employed the

concept of self-targeting gRNA (stgRNA; see another

article in this issue [32]) [33] and successfully recorded

combinatorial chemical conditions of human cell culture,

in which two stgRNAs were regulated under the control

of doxycycline-inducible and IPTG-inducible promo-

ters. The mSCRIBE concept was also used to establish

an inflammation-recording cell line using an NF-kB-

inducible Cas9 expression cassette and record lipopoly-

saccharide-induced inflammation levels of individual

mice in the synthetic DNA of the cells.

CAMERA (CRISPR-mediated analog multi event

recording apparatus) has been also proposed to construct

synthetic circuits that can transmit order information of

different environmental signals into DNA [34��]. In

CRIPSR–Cas9, the gRNA/target DNA heteroduplex

tends not to require perfect base pairing in the PAM

distal region, whereas the PAM-proximal ‘seed’ sequence

is necessary for the efficacy of Cas9 [35]. In CAMERA, by

harnessing this feature and using a C:G-to-T:A base
www.sciencedirect.com



DNA event recorders Ishiguro, Mori and Yachie 57

Figure 2
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Synthetic DNA circuits using CRISPR base editors. (a) Conceptual diagram of the cytidine base editor. (b) An example circuit demonstrated in the

CAMERA study. The S1-to-S2 state transition by base editing using gRNA-2 can be induced only after the S0-to-S1 transition by gRNA-1

generates the seed sequence for gRNA-2. (c) An example circuit demonstrated in the DOMINO study. The iterative domino-like editing of a

repetitive sequence by a C:G-to-T:A base editor tethered to a transcription factor increases the fluorescent protein expression level over time.
editor, a circuit was established in E. coli cells, in which

data recording by a secondary gRNA could not be

achieved until the first gRNA made a specific C:G-to-

T:A edit to create the seed sequence for the secondary

gRNA (Figure 2b). CAMERA was also used to record the

intracellular status of mammalian cells. For example,

using the TCF/LEF promoter linked to the base editor,

lithium chloride-dependent recording of Wnt signaling

was achieved.

DOMINO (DNA-based ordered memory and iteration

network operator) employs the same concept used in

CAMERA, but achieves more complex circuits, in which,

for example, an IPTG-inducible gRNA sequentially

restores the seed sequencesof its three tandem overlapping

target sites so that the fourth editing by an arabinose-

inducible gRNA can be made in accordance with the

concentration of IPTG and duration of IPTG exposure

[36��]. In this circuit, the sequential rounds of base editing

increase the copy number of targetable sequences for the

same gRNA. By fusing the transcription factor VP64 to the

base editor, a similar DOMINO circuit was also used to

demonstrate an online state reporting circuit in mammalian

cells, where the GFP expression level was increased along

with time progression (Figure 2c).

CRISPR–Cas1–Cas2 as another class of DNA
event recorder systems
While CRISPR immunity systems are evolutionary

diverged, one of which is Cas9 from the type II-A
www.sciencedirect.com 
CRISPR system, the upstream CRISPR immunization

process is relatively conserved across species, in which the

Cas1–Cas2 protein complex is commonly involved in the

acquisition of invasive DNA into the CRISPR locus

(Figure 3a) [37–39]. The genomic CRISPR sequence

consists of a leader sequence followed by an array of

periodic repeats interspaced by previously immunized

spacer sequences (as its acronym stands for) and the

immunization of a new ‘protospacer’ DNA always occurs

on the leader-proximal repeat, creating a new interspaced

repeat unit (Figure 3b). Therefore, the order of spacers in

the CRISPR array from the tail to head direction can be

seen as an old-to-new historical immunization or invasion

record of foreign DNA fragments in the host cell.

Active recording of high content artificial information into

an E. coli cell population was recently demonstrated using

the type I-E CRISPR acquisition system [40]. In this

study, three sets of artificial protospacers were prepared

separately for five rounds of information recording. For

each round every 20 hours, three protospacers each from a

different set were pooled and introduced into the cell

population. Although a single bacterial cell cannot effi-

ciently record all protospacer queries in its CRISPR locus,

newly queried protospacers are always acquired in the

upstream region of the older spacers. Using this property,

a computational framework enabled prefect reconstruc-

tion of the orders of protospacer queries for all three sets

from the massively parallel sequencing data of the

population’s CRISPR arrays. This approach was also
Current Opinion in Chemical Biology 2019, 52:54–62
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Figure 3
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Spacer acquisition by CRISPR–Cas1–Cas2. (a) Structure of the Cas1–Cas2 protein complex bound to a protospacer DNA (PDB number: 5DQZ).

(b) Schematic representation of spacer acquisition to a CRISPR array by the Cas1–Cas2 complex. (c) Conceptual diagram of TRACE. The copy

number of the trigger plasmid is induced by a signal input, by which the spacer acquisition from the trigger plasmid is also enhanced, while that

from the reference DNA remains at the same level.
demonstrated in another study, in which the world’s first

movie ‘The Horse in Motion’ by Edward Muybridge in

1878 was converted into a five-frame 36 � 26 pixel ani-

mation and recorded in a cell population using a pool of

104 protospacers for each frame [41]. The five sets of the

complex protospacer pools were sequentially introduced

into a cell population from which more than 90% of the

movie data were recovered.

Temporal recording of extracellular signals
using Cas1–Cas2
The CRISPR–Cas1–Cas2 system can be also used to

record environmental event histories of cells in their

CRISPR arrays. As seen in high content artificial data

recording examples, the directionality of spacer acquisi-

tion in the CRISPR locus allows simple implementation

of a synthetic circuit to record time course event signals.

TRACE (temporal recording in arrays by CRISPR expan-

sion) is the first example that enables recording of tem-

poral environmental stimuli of an E. coli cell population

into their CRISPR arrays using CRISPR–Cas1–Cas2

[42��]. This method employs the concept of a trigger

plasmid (pTrig), in which the phage P1 lytic replication
Current Opinion in Chemical Biology 2019, 52:54–62 
protein RepL and its replication origin are placed down-

stream of a chemically inducible promoter, so that the

copy number of the plasmid in cells can be elevated by

the corresponding environmental compound. As opposed

to the pTrig plasmid, the other cellular DNA, such as

genomic DNA and the other plasmid encoding the anhy-

drotetracycline (aTc)-inducible Cas1–Cas2 system, is rel-

atively stable and serves as reference DNA. While the

acquisition of spacers from pTrig and the reference DNA

occur at a constant rate when aTc induces Cas1–Cas2, the

spacer acquisition frequency from pTrig is elevated when

cells are also exposed to its corresponding chemical signal

(Figure 3c). In TRACE, four variants of pTrig plasmids

have been developed for IPTG, cooper, trehalose, and

fructose signals, allowing time course event recording of

combinatorial signal patterns into CRISPR arrays of a cell

population at a certain degree.

Transcriptome-scale molecular recording into
cell populations using RT-Cas1–Cas2
A common drawback in all of the abovementioned systems

is that the recording targets need to be predefined in the

circuit and are restricted to a limited number and kinds of
www.sciencedirect.com



DNA event recorders Ishiguro, Mori and Yachie 59
chemical compounds or cellular events that can be linked to

specific promoters available in a target system. The ideal

DNA event recorder would autonomously and efficiently

record a wider range of temporal molecular and environ-

mental information of cells to trace a variety of cell statuses.

Because type III CRISPR systems have activities to

digest RNA [43–46] and some of their Cas1 genes are

naturally fused to reverse transcriptase domains (RT-

Cas1) in various species [47–49], it has been suggested

that there is a conserved mechanism of spacer acquisition

from RNA such as for the defense against RNA viruses.

The first example of RNA-derived spacer acquisition has

been recently discovered in Marinomonas mediterranea
(MMB-1), in which intracellular RNAs are reverse

transcribed and acquired in the genomic CRISPR array

by the RT-Cas1–Cas2 complex [50�]. While functional

reconstitution of MMB-1 RT-Cas1–Cas2 to yet to be

performed in E. coli, another recent study has demon-

strated that Fusicatenibacter saccharivorans RT-Cas1–Cas2

(FsRT-Cas1–Cas2) can work heterologously in E. coli to

acquire sequences of both endogenously expressed RNAs

and viral RNAs into a synthetic CRISPR array. By devel-

oping a method to efficiently capture newly expanded

CRISPR spacers, namely SENECA (selective amplifica-

tion of expanded CRISPR arrays), for massively parallel

sequencing, this study also established the Record-seq

method that enables transcriptome-scale molecular

recording in cell populations (Figure 4) [51��].

In this study, Record-seq successfully captured RNA-

derived spacer acquisition from a chemically inducible

transgene by which the acquisition frequency in the
Figure 4
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populational CRISPR array sequences was also elevated

along with the increased input level of the chemical com-

pound. Furthermore, while transcriptome and Record-seq

profiles of E. coli cells in each of the different growth phases

correlated at a certain level, a higher correlation was

observed between a transcriptome profile of the log phase

and a Record-seq profile of the stationary phase, showing

that Record-seqcaptured pastmolecular profile information

of cells observed at the time of the experiment. Record-seq

also distinguished whether cell populations were under

oxidative (oracid)stressornot,and whethercellpopulations

were transiently experiencing herbicide exposure, which

could not be differentiated by their transcriptome profiles.

This is the first demonstration of a synthetic DNA recorder

systemthatenabled retrospective reconstruction ofpast cell

population statuses by recording global molecular profiles

without defining specific target events.

Because SENECA identifies newly acquired spacer units

separately, it currently limits the capacity of the Record-

seq method that can readout only an additive (or cumu-

lative) transcriptome profile for some ambiguous duration

in the past of the cell population without their time course

information. However, similar to the other Cas1–Cas2-

based recording methods that successfully reconstruct the

order of different event signals from CRISPR arrays,

further developments would enable serial recording of

dynamic changes in transcriptome profiles into cellular

CRISPR arrays.

Outlook and discussion
The permanent recoding of environmental stimuli into

cellular DNA has been achieved by synthetic circuits
Newly acquired spacer

E. coli  genome

Intracellular transcriptome

Transcriptional record stored in DNA

sition
nversion)
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using DNA recombinases and more recently by CRISPR-

related approaches. However, all of the current methods

remain at the proof-of-concept stage, which have demon-

strated molecular recording of event histories only at the

cell population level. None of them have yet accom-

plished analysis of heterogeneous cells or clones with

diverse phenotypic trajectories such as differentiation.

This is because the numbers of target signals that can

be efficiently recoded in synthetic DNA tapes have been

currently limited to distinguish diverse cell statuses, and/

or the signal-to-memory transmission efficiencies of the

DNA writer modules have been too low to record suffi-

cient amount of information in DNA. While mSCRIBE,

CAMERA, and DOMINO have been demonstrated to

achieve highly efficient recording of cellular events in

synthetic DNA introduced into mammalian cells, the

signal events that can be recoded simultaneously in these

systems have been limited to those with available corre-

sponding promoters. Although RT-Cas1–Cas2 has the

potential to record transcriptome profiles into DNA, its

spacer acquisition efficiency is extremely low [51��].
Furthermore, neither Cas1–Cas2 nor RT-Cas1–Cas2

has been successfully reconstituted heterologously in

eukaryotic cells.

The DNA event recorder concept would be useful to

study heterogeneous progression of mammalian systems

only when it renders recording of a broader range of past

information in DNA tapes at the single cell resolution or

at least at the level of cell type groups, each of which

corresponds to a distinct cell progression trajectory. While

the establishment of RT-Cas1–Cas2-based molecular

recording in mammalian cells could be one of the goals,

it would require discovery of a new RT-Cas1–Cas2 vari-

ant that can heterologously work in mammalian cells or

cryptic bacterial factors that support the function of the

previously characterized RT-Cas1–Cas2 in mammalian

systems, as well as enhancement of their efficiencies.

Therefore, another possible direction could be increasing

the scalability of Cas9-based approaches. In the inflam-

mation recording by mSCRIBE and the Wnt signaling

recording by CAMERA, the gene expression of the DNA

writer modules, Cas9 or the C:G-to-T:A base editors, was

under the control of specific promoters. However, a better

approach would be regulating expression of multiple

gRNAs in accordance with their respective promoters

linked to specific gene expression. While gRNAs cannot

be naturally expressed from variety of RNA polymerase

type II (pol II) promoters, recent studies have shown that

gRNAs concatenated with self-cleaving ribozymes [52] or

tRNAs [52,53] can be expressed by pol II promoters.

Furthermore, riboswitch systems have been demon-

strated to regulate folding of the mature gRNA secondary

structure in response to a ‘trigger’ RNA [54], showing the

potential to construct large RNA circuits that transmit a

broader range of RNA expression patterns to synthetic

DNA tapes. For example, embryonic stem cells harboring
Current Opinion in Chemical Biology 2019, 52:54–62 
a circuit that enables simultaneous recording of Oct4,

Sox2, Klf4, cMyc, and other maker gene expression

histories would be of great use in studying cell differen-

tiation and reprogramming processes.

Taken together, the current progress in this field suggests

some potential approaches to establish high capacity cell-

embedded DNA event recorder systems that overcome

the limitations of the current technologies to trace

changes in molecular profiles and environmental condi-

tions of different cells in complex biological systems

including mammalian tissues and individuals. Moreover,

as discussed in another article of this issue [32], the

development of ‘evolving DNA barcodes’ has also been

rapidly accelerated for high resolution cell lineage tracing

of multicellular organisms with the concept of DNA

barcodes and CRISPR–Cas9 to establish a new frame-

work to discuss heterogeneous cellular phenotypes in the

context of cell lineages. Further developments in both of

these fields would enable us to understand how mamma-

lian and other heterogeneous systems develop and func-

tion with their molecular and cellular contexts.
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