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SUMMARY

Many traits are complex, depending non-additively
on variant combinations. Even in model systems,
such as the yeast S. cerevisiae, carrying out the
high-order variant-combination testing needed to
dissect complex traits remains a daunting challenge.
Here, we describe ‘‘X-gene’’ genetic analysis (XGA),
a strategy for engineering and profiling highly combi-
natorial gene perturbations. We demonstrate XGA on
yeast ABC transporters by engineering 5,353 strains,
each deleted for a random subset of 16 transporters,
and profiling each strain’s resistance to 16 com-
pounds. XGA yielded 85,648 genotype-to-resistance
observations, revealing high-order genetic interac-
tions for 13 of the 16 transporters studied. Neural net-
works yielded intuitive functional models and guided
exploration of fluconazole resistance, which was
influenced non-additively by five genes. Together,
our results showed that highly combinatorial genetic
perturbation can functionally dissect complex traits,
supporting pursuit of analogous strategies in human
cells and other model systems.

INTRODUCTION

Genes often encode interdependent and functionally overlap-

ping molecular systems, such that combinations of genetic

variants can yield surprising phenotypes (Hartman et al., 2001).

This phenomenon defines genetic interactions and gives rise to

complex traits that cannot be understood by single-gene pertur-

bations. Model eukaryotes, including the yeast S. cerevisiae and
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cultured human cells, have been an important testbed for under-

standing complex traits. Observing genetic interactions between

pairs of genes, e.g., using synthetic genetic array analysis (SGA),

has systematically uncovered functional relationships in yeast

(Costanzo et al., 2016) and human cells (Horlbeck et al., 2018;

Shen and Ideker, 2018), improving our understanding of gene

function (Costanzo et al., 2016) and order-of-action in biological

pathways (St Onge et al., 2007).

Genetic interactions with higher complexity, e.g., three-gene

perturbations yielding phenotypes that are unexpected given

the corresponding one- and two-gene perturbation phenotypes,

can reveal additional important functions (Haber et al., 2013;

Kuzmin et al., 2018). Indeed, three-gene interactions are ex-

pected to outnumber two-gene interactions by 100-fold (Kuzmin

et al., 2018). Beyond three-gene interactions, higher-order gene

variant combinations have yielded interesting effects—e.g.,

involving four (Takahashi and Yamanaka, 2006), five (Taylor

and Ehrenreich, 2014), seven (Beh et al., 2001), and over twenty

genes (Wieczorke et al., 1999). Systematic maps of higher-order

interactions between variants at a single locus have been used to

understand several diverse processes (Baeza-Centurion et al.,

2019; Domingo et al., 2018; Sarkisyan et al., 2016). However,

higher-order interactions between variants in different genes

have remained poorly characterized, limiting functional under-

standing of complex multi-gene dependencies.

To systematically investigate complex genetic dependencies

beyond one- and two-gene combinatorial analysis, we devel-

oped an ‘‘X-gene’’ genetic analysis (XGA) strategy that uses

many combinations of engineered multi-gene perturbations to

profile and interpret higher-order genetic interactions. We

demonstrate XGA on S. cerevisiae ABC transporters, which are

involved in cellular efflux of small molecules (Paumi et al., 2009)

and for which several informative multi-knockout phenotypes

have been reported (Khakhina et al., 2015; Kolaczkowska et al.,

2008; Suzuki et al., 2011). More specifically, we apply XGA
nuary 22, 2020 ª 2019 The Author(s). Published by Elsevier Inc. 25
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Overview of a Cross-Based Implementation of XGA

A population is engineered by mating a barcoded pool of wild-type cells with a multi-mutant strain (here, the ABC-16 strain bearing 16 ABC transporter

knockouts). Each haploid progeny strain inherits a unique DNA barcode and a random combination of knockout (black) and wild-type (white) alleles. Progeny are

picked from single colonies and arrayed in 384-well plates. An en masse tag-based PCR indexing strategy associates the genotype of each strain to a DNA

barcode. Strains are pooled by mating type. Pools are grown in specific environments (here in 16 drugs and a DMSO solvent control). High-throughput

sequencing of strain-specific DNA barcodes at multiple time points reconstructs the resistance of each strain to each drug. See also Figure S1.
systematically to the entire set of 16 yeast ABC transporters that

have been implicated in multi-drug resistance. By revealing a

multi-knockout genetic landscape for 16 bioactive compounds

(‘‘drugs’’), XGA uncovered many drug-dependent high-order ge-

netic interactions involving as many as five genes. A neural

network trained on XGA data provided an intuitive genotype-to-

phenotype model and functional insights into this system of

ABC transporters. Taken together, our results show that XGA

can systematically uncover high-order genetic relationships and

use them to model mechanism. These results support the poten-

tial power of analogous highly combinatorial perturbation strate-

gies in human cells to functionally dissect other complex traits

and associated molecular systems.

RESULTS

Cross-Based XGA: A Scheme for Generating and
Characterizing Combinatorially Complex Mutants
Here, we describe a variant of the XGA strategy that generates

an ‘‘engineered population’’ by crossing a wild-type and a

multi-knockout strain (Figure 1). We then show the results for

this strategy as applied to 16 yeast ABC transporters. Briefly, tar-

geted polygenic variation is engineered into a parental strain,

such that a genetic cross yields a population in which only the

engineered variation is segregating.
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As recently reviewed (Kebschull and Zador, 2018), many

individual strains can be tracked in a complex heterogenous

population using DNA barcodes. We therefore introduced a

complex pool of random barcodes into a haploid parental strain

(which was wild type for all ABC transporter genes of interest in

this study), as described previously (Dı́az-Mejı́a et al., 2018)

(Figures S1A and S1B). We crossed this barcoded wild-type

pool en masse to a previously generated ‘‘ABC-16-strain’’,

which bears knockouts for all 16 of the ABC transporters that

have been implicated in multi-drug resistance (Suzuki et al.,

2011). The ABC-16 strain contained all markers necessary to

perform mating, sporulation, and selection for haploid cells,

while the barcoded wild-type parent provided the marker

necessary to select for cells carrying a barcoded HO locus (Fig-

ure S1B). After mating, sporulation, and selection for barcoded

haploid progeny of the cross, we used automated colony pick-

ing to isolate an arrayed collection of 5,760 MATa and 5,760

MATa segregants in 384-well plates. This step generated an

engineered population in which each individual haploid strain

bears a random subset of knockout alleles for the target set

of 16 ABC transporters.

For each strain in this arrayed population, we determined the

genotype at all 16 knockout loci and identified the barcode. To

genotype, we exploited the fact that each knockout locus in

the ABC-16 strain was derived from a YKO yeast deletion strain



Figure 2. Illustrating a Reproducible Five-Gene Resistance Landscape

(A) Knockout effects on drug resistance averaged over all genetic backgrounds. A linear model identified significant single-gene marginal effects (p < 0.05 after

adjusting for multiple testing). Those found in both MATa and MATa pools are shown. Five transporter genes were identified as being frequently associated with

drug resistance traits. See also Figure S2A.

(legend continued on next page)
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(Giaever et al., 2002; Suzuki et al., 2011) and is therefore flanked

by a deletion-identifying barcode. We adapted the previously

described row-column-plate PCR (RCP-PCR) strategy (Yachie

et al., 2016), in which barcodes in each segregant are amplified

together with additional PCR-introduced index tags that identify

the plate, row, and column of origin for each amplification prod-

uct (Data S1; Figure 1). Thus, a single sequencing experiment re-

vealed both the strain-specific tracking barcode at the HO locus

and the identity of every gene deleted in each segregant at each

plate location (Data S2; Figure 1).

Two independent methods estimated the overall per-locus

genotyping accuracy to be from 93.2% to 93.8% (Figures S1C

and S1D). Based on correlation analysis of the genotyping

data, all genes were either unlinked or weakly linked except for

BPT1 and YBT1 (Figure S1E; r = 0.49), which are separated by

70.1 kb on chromosome XII. Considering only those strains

with both high-quality genotyping data and at least one unique

tracking barcode, our engineered strain population included

6,826 uniquely barcoded and genotyped strains, encompassing

6,087 unique genotypes. These strains were grouped by mating

type to yield one pool of 3,231 MATa strains and another pool of

3,595 MATa strains.

To profile each strain’s resistance or sensitivity to 16 different

bioactive compounds (‘‘drugs;’’ Data S3), we grew the strain

pools competitively in each drug and in a solvent (DMSO) control

condition. The drugs tested included seven anti-cancer drugs,

four azole antifungals, and five other compounds that are useful

chemical probes or are potential anti-microbials (Data S3). Ten of

these compounds had an established phenotype for knockouts

of SNQ2, PDR5, or YOR1 (Data S3). We used high-throughput

strain barcode sequencing at five time points (corresponding

to 0, 5, 10, 15, and 20 generations of overall pool growth, Fig-

ure 1) to estimate growth rate and resistance for each strain in

each drug (Data S4; STAR Methods). We performed additional

filtering steps, limiting analysis to strains that were well-repre-

sented in the pre-selection pool (R30 barcode counts at t = 0

in the solvent control), which captured 5,790 (85%) of 6,826

strains. We further excluded all 437 strains exhibiting a strong

baseline growth defect (i.e., showing <70% of the median base-

line growth rate). In total, drug resistancewas calculated for each

of 2,367 MATa and 2,986 MATa strains, for each of the 16 drugs

(Data S4).

Grouped Combinatorial Profiles Illustrate a Complex
and Drug-Dependent Genetic Landscape
For an initial analysis, we identified and quantitatively modeled

associations between individual ABC transporter knockouts

and drug resistance phenotypes using a generalized linear

model (STARMethods). We found 62 associations between indi-
(B) Comparison of five-gene camptothecin and ketoconazole resistance profiles

belonging to each five-gene genotype group, averaging over other genotypes. S

(C) Five-gene resistance profiles were highly reproducible between MATa and M

(D) A five-gene ‘‘XGA wheel’’ of benomyl resistance. Strains were grouped as in F

wild-type group, while radial segments extending outwards represent the mean

knockout alleles, relative to the five-gene wild type. Extensions to 1, 2, and 5 to

and pdr5Δ in clockwise order, excluding previously-added knockouts. The color s

observed drug resistance values.

(E) XGA wheels for 8 drugs, as defined in Figure 2C. See also Figure S3.
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vidual knockouts and drug resistance that were reproducible in

both MATa and MATa pools (Figure 2A). Most (58/62) of these

associations involved five ‘‘frequently associated’’ ABC trans-

porters—snq2D, pdr5D, yor1D, ycf1D, and ybt1D (Figure 2A).

For these five frequently associated transporters, we detected

16 of 18 previously reported associations between drug resis-

tance and individual knockouts, while revealing 40 additional as-

sociations (Datas S3 and S5). For example, we detected 18 drug

resistance associations involving the vacuolar ABC transporters

YCF1 and YBT1, none of which had been previously reported

(Figure 2A; Data S5). We also found 4 associations between

knockouts and growth rate in the DMSO control condition (Fig-

ure S2A; Data S5). Of these four associations with baseline

growth, only yor1D had an appreciable effect (7%–15%

decrease), while the other three baseline growth effects were

quite weak (<2% decrease; Figure S2A; Data S5).

Again considering only the five frequently associated trans-

porters, we calculated the average resistance over strain groups

that correspond to one of the 32 (25) possible combinatorial ge-

notypes (ignoring genotype outside the five frequently associ-

ated genes). The resistance profiles for these strain groups

showed high reproducibility when calculated separately for

MATa andMATa pools (Figure S2B). For example, camptothecin

and ketoconazole each showed correlations of r R 0.99 (Fig-

ure 2B). Colchicine showed the least correlation between

biological replicates (r = 0.77) but also the lowest absolute error

(Figure S2B). This suggests that the lower reproducibility of

colchicine stems from a lesser dependence of resistance on

the genotypes tested, as the resistance of the five-gene groups

ranged only from 0.98 to 1.02 (Figure S2B).

The five-gene resistance profiles could be used to provide a

visual overview of multi-knockout resistance in each drug. We

created an ‘‘XGA wheel’’ for each drug, representing the conse-

quences of knocking out increasingly many ABC transporters as

paths leading outward from the central wild-type genotype (Fig-

ures 2D and 2E). As expected, XGA wheels were visually similar

between independent MATa and MATa populations for many

drugs (Figures 2E and S3). These landscapes also highlighted

high-order combinations of ABC transporters, which, when

deleted, led to greater drug resistance (Figures 2E and S3). Given

high reproducibility, MATa andMATa data weremerged for sub-

sequent analyses, except where noted.

To analyze the five-gene combinatorial resistance profiles in

more detail, we visualized them as fitness landscapes (Ferretti

et al., 2018) (Figures 3 and S4). For some drugs, these land-

scapes illustrated a clear sensitivity effect from knocking out

only one transporter—e.g., pdr5D for cycloheximide and tamox-

ifen (Figure 3). In other drugs, we saw increased sensitivity

resulting from knocking multiple transporters—e.g., the set
between MATa and MATa pools. Mean resistance was calculated for strains

ee also Figure S2B.

ATa pools for 15 of 16 drugs tested.

igure 2B. Color at the center represents the mean resistance of the five-gene

resistances of strains grouped by the indicated series of cumulatively added

tal knockouts are illustrated. Each section adds ycf1Δ, ybt1Δ, yor1Δ, snq2Δ,
cale for each pool ranges between one standard deviation below and above the



Figure 3. Five-Gene Knockout Landscapes Illustrate Complex Drug Resistance Effects

Resistance landscapes of strain groups defined by genotypes at five frequently associated transporters are shown for eight drugs. Groups differing by a single

additional knockout are connected by lines. Solid lines indicate significant differences in resistance (multiple-testing-adjusted p < 0.05, Mann-Whitney U test),

otherwise dashed lines are used. See also Figure S4.
{snq2D, pdr5D} under camptothecin and the set {snq2D, pdr5D,

ybt1D, yor1D} under mitoxantrone (Figure 3). These sensitivity

patterns are consistent with a relatively simple scenario in which

one or more transporters can efflux a given drug.

For other drugs, the fitness landscapes showed multi-

knockout patterns conveying both drug resistance and sensi-

tivity. In benomyl, for example, we observed not only the

expected sensitivity in knockouts of the known primary efflux

pump snq2D (20% decreased resistance, p = 1.4e-95; Mann-

Whitney U test) but also 13% increased resistance in pdr5D

knockouts (p = 1.3e-41) and further resistance in the pdr5D

yor1D double-mutant (21% increased resistance; p = 1.3e-72).

All of these effects had been previously reported (Kolaczkowska

et al., 2008; Snider et al., 2013) and have been explained by

SNQ2-mediated resistance that increases upon deleting pdr5D

and yor1D. Consistent with this explanation, the deletion-depen-

dent benomyl resistance effects we observedweremoremodest
in a snq2D background (Figure 3). A similar landscape was found

in bisantrene, which also showed a strong snq2D sensitivity ef-

fect (Figure 3). In valinomycin, only yor1D showed sensitivity,

whereas knocking out pdr5D, snq2D, ybt1D, and ycf1D (individ-

ually or in any combination) led to greater resistance (Figure 3).

XGARevealsManyDrug-Dependent High-Order Genetic
Interactions
To identify andmodel multi-gene knockout effects at all 16 trans-

porters, we used a generalized linear model to capture both sin-

gle-knockout effects and multi-gene interactions. To guard

against overfitting for each drug, we considered only interactions

between genes exhibiting marginal (single-gene) resistance or

sensitivity to that drug and eliminated any terms that did not yield

a statistically significant improvement in model fit (see STAR

Methods). All single-knockout effects and multi-knockout ge-

netic interactions that passed the significance test (p < 0.05 after
Cell Systems 10, 25–38, January 22, 2020 29



Figure 4. Drug-Dependent Complex Genetic Interactions among 16 ABC Transporters
(A) All significant single-gene knockout effects and X-way genetic interactions (quantified by ε values) mediating resistance to each compound (Multiple-testing-

adjusted p < 0.05). Magnitudes of genetic effects were estimated by a generalized linear model and then rescaled for each drug.

(B) Illustration of three five-gene genetic interactions that were observed in cisplatin, mitoxantrone, and bisantrene experiments. For each illustrated interaction,

strains were grouped by the five genes of interest (averaging over the 11 other loci). Top panels show distribution of drug resistance for strains in each group.

Differences in median resistance (black lines) between the indicated four- and five-gene groups were evaluated via Mann-Whitney U test. The bottom row

dissects the selected five-gene interactions by showing the magnitude of genetic effects for single-gene and lower-order knockout combinations.
adjusting for multiple testing) are shown in Figure 4A. The

majority of these knockout effects and interactions (141/187,

75%) involved only the five frequently associated transporters

(Figure 2A).

This analysis yielded genetic interactions involving two ormore

genes for 15 (94%) of 16 drugs examined (Figure 4A). The excep-

tion was beauvericin, for which we only recovered the previously

reported sensitivity of yor1D knockouts (Shekhar-Guturja et al.,

2016). Higher-order genetic interactions (involving three or
30 Cell Systems 10, 25–38, January 22, 2020
more genes) were observed in 14 (88%) of 16 drugs tested (Fig-

ure 4A). Thus, XGA revealed higher-order genetic interactions for

nearly all drug resistance phenotypes studied.

Of the 16 genes targeted by XGA, 14 were involved in at least

one genetic interaction. Of these 14 genes, 13 were involved in at

least one higher-order interaction. Remarkably, 11 of the 16 tar-

geted genes were involved in at least one five-gene interaction.

Formally identifying complex genetic interactions captured

many of the effects that had been readily apparent by manual



examination of the five-gene fitness landscapes while yielding

additional effects. For example, pdr5Dwas found to have a pos-

itive resistance effect under benomyl, a positive genetic interac-

tion with yor1D, and a negative genetic interaction with snq2D

(Figure 4A; Data S5). Strong high-order interactions involving

genes outside of the five frequently associated transporters

were also uncovered. In both cisplatin and mitoxantrone, for

example, a five-way positive interaction pointed to the phenom-

enon that a bpt1D deletion confers resistance in a sensitive

pdr5D snq2D ycf1D yor1D background (Figure 4B). Similarly,

vmr1D conferred bisantrene resistance in a snq2D ybt1D ycf1D

yor1D background while also conferring sensitivity in a ybt1D

background (Figure 4B).

High-order genetic interaction analysis allowed finer parsing of

the relationship between the involved genes. For example, the

mitoxantrone sensitivity of the snq2D pdr5D ybt1D yor1D

quadruple mutant (Figure 3) was modeled as the combination

of two single-gene negative effects for snq2D and pdr5D alone,

a two-gene negative interaction between snq2D and pdr5D, two

three-gene negative interactions (between snq2D pdr5D and

each of ybt1D and yor1D), and a four-gene {snq2D, pdr5D,

ybt1D, yor1D} negative interaction (reflecting the fact that the

quadruple mutant is more sensitive than would be expected

given the observed resistance of any of the three-deletion subset

genotypes; Figures 4A and 4B; Data S5). Together, these com-

plex negative genetic interaction patterns suggest that the four

genes enable mitoxantrone efflux in parallel. Similar ‘‘parallel

efflux’’ genetic interaction patterns were observed, e.g., for

{pdr5Δ, snq2Δ} in camptothecin and {pdr5D, snq2D, yor1D} in

cisplatin (Figures 4A and 4B; Data S5).

Using XGA to Learn Intuitive Genotype-to-Phenotype
Models of the ABC Transporter System
While the generalized linear models used above do capture

complex genotype-phenotype relationships, they do not always

efficiently convey useful intuition about the system. For example,

we reasoned that a set of transporter genes showing patterns of

within-set negative genetic interactions suggests that each

transporter is independently capable of drug efflux. Other ge-

netic interaction patterns led us to conclude that the presence

of one transporter can positively or negatively influence the activ-

ity of another (e.g., influence on Snq2 activity from PDR5 and

YOR1 in benomyl). However, it is laborious to manually derive

functional intuition from complex genetic evidence, and it is

difficult to objectively evaluate the extent to which functional

explanations fit the observed data. To demonstrate that complex

genotype-phenotype relationships can be used to automatically

and objectively derive biological intuition, we developed a neural

network model.

We structured the neural network model (Figure 5A) to have

three layers: (1) an input layer encoding the binary genotype for

each of the 16 targeted transporters (G), (2) a middle ‘‘hidden’’

layer with values that estimate the activity of each of the 16 trans-

porters (A; ranging from 0 to 1), and (3) an output layer that quan-

titatively describes resistance to each of 16 drugs (R; ranging

from 0 to 1). To represent regulatory influence relationships be-

tween transporters, the links between genotype and activity

layers have (initially unknown) ‘‘influence’’ weights (I), with posi-

tive weights where gene presence increases activity and nega-
tive weights where gene presence decreases activity. To enforce

the expected behavior, that a transporter should not provide any

efflux activity if it has been knocked out, and to associate each

node in the activity layer with a specific gene, we explicitly set

the activity of any knocked out transporters to 0. The links be-

tween activity and resistance layers have (initially unknown)

non-negative ‘‘efflux’’ weights (E) that capture the extent to

which each transporter can catalyze the efflux (or otherwise

reduce the activity) of each drug. The model also allowed for

offset terms for both A and R.

We learned the appropriate network weights via back-propa-

gation and stochastic gradient descent, training on the complete

set of drug resistance phenotypes. To favor more parsimonious

models and thus guard against overfitting, the cost function that

was used to optimize network weights contained a penalty that

acts to limit the number of non-zero weights, and each non-

zero weight was tested for reproducibility and predictive impact

(Figure S5A).

Training this model on our input dataset of 85,648 genotype-

phenotypemeasurements yielded an interpretable neural network

with only 71 non-zero fitted parameters (6 Iweights, 49Eweights,

noA offset terms, and 16R offset terms). Despite its parsimonious

nature, the trained neural network model largely recapitulated

the observed genotype-phenotype relationships (r = 0.96, Fig-

ure 5C). To test that this performance generalizes to unseen

data, we also trained the model using only data from one mating

type then tested it using independent data from the other mating

type. This yielded similar performance (r = 0.95 and r = 0.96

when using either mating type a or a as training, respectively [Fig-

ure S5B]), and the resulting independently trained models also

showed strong agreement in parameter values (r = 0.98; Fig-

ure S5C), suggesting that model parameters were robustly

determined.

The first notable result from this model was that all influence (I)

values were either zero or negative. More specifically, only 6 out

of 240 influence values were negative, while all others were zero

(Figure 5B). Thus, while some ABC transporters exhibited nega-

tive influence on other ABC transporters, our study of 16 trans-

porters in 16 drugs found no evidence that the presence of any

ABC transporter can positively influence any other ABC

transporter.

The three highestEweights were between Pdr5 and tamoxifen

(E = 13.2), Yor1 and beauvericin (E = 8.6), and Snq2 and bisan-

trene (E = 7.8). In each case, there was a strong sensitivity effect

from removing these genes (Figure S4). However, the majority of

the 49 non-zero E weights were of small effect (25/49 are below

0.5; Data S6).

The objectively trained neural network model provided func-

tional intuition about complex genetic interactions that largely

agreed with manual interpretations. For example, the manual

genetic interpretation that Pdr5, Snq2, Yor1, and Ybt1 are

each independently able to efflux mitoxantrone, was also

supported by positive E links connecting each of these trans-

porters to mitoxantrone (Figure 5B). The model showed Snq2

to have the highestmitoxantrone efflux activity (E = 1.8), followed

by Pdr5, Yor1, and Ybt1 (E= 1.5, 0.5, and 0.4, respectively; Fig-

ure 5B; Data S6). These differences were reflected in the fitness

landscape: for example, while mitoxantrone resistance of a

ybt1D yor1D deletion strain (DE = �0.9) was not significantly
Cell Systems 10, 25–38, January 22, 2020 31



Figure 5. An Intuitive Neural Network Model of Complex Genotype-Phenotype Relationships

(A) Structure of the neural network trained on XGA data. Genotypes (G) are provided as input. Transporter activities (A), transporter-transporter influence weights

(I), and transporter-drug efflux weights (E) are inferred from the output drug resistance (R) values by back-propagation and stochastic gradient descent.

(B) A schematic diagram of the weights learned by the neural network model after training. Inferred efflux activities (E weights) are represented as black arrows

emerging from transporters. Each efflux arrow is labeled by a colored shape that indicates the effluxed drug. Inferred influences of one transporter on the activity

of another (defined by I weights) are shown as intracellular arrows between transporters. All influences identified were negative. See also Figure S5A.

(C) Agreement between measured and neural-network-modeled drug resistance. See also Figures S5B–S5D.

(D) Extending the valinomycin resistance model improves agreement with measurement. For simplicity, data are shown only for the five ‘‘frequently associated’’

transporters. The trained neural network weights (top) are shown for the original model (top-left) and one with an extra node in the A layer to model potential

influence on a hypothesized resistance factor (top right). See also Figure S5E.
different from the wild type (p = 0.12), deletion of genes encoding

the two transporters with the highest inferred efflux (Snq2 and

Pdr5, DE = �3.3) yielded a 7% decrease in resistance (p =

1.2e-70). The I weights also pointed to differential inhibitory ef-

fects between transporters: for example, Snq2 activity is pre-

dicted to be more strongly inhibited by PDR5 than by YOR1

(I = �0.69 versus �0.11, Figure 5B; Data S6), which is reflected,

for example, by the observation that pdr5D yields greater

benomyl resistance than does yor1D (Figure 3).

The neural network model also reflected the lack of genetic in-

teractions observed for some drugs. For example, Yor1 was the
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only transporter modeled to provide strong efflux for beauvericin

(E = 8.6). We also did not find evidence for regulatory influence

on Yor1 by the other transporters (Figure 5B; Data S6). This

lack of influence and parallel efflux relationships mediating resis-

tance to beauvericin was consistent with its lack of genetic inter-

actions (Figure 4A).

While the neural network model was accurate overall, predic-

tions departed systematically from observation for some drugs

(Figure S5D). For example, while XGA showed that many multi-

transporter deletions resulted in increased valinomycin resis-

tance (Figure 3), the neural network only captured the decreased



resistance resulting from yor1D, yielding poor predictions overall

for the five-gene groups (r = 0.49, Figure 5D, left panel). Given

previous reports of improved valinomycin resistance upon

deletion of all 16 transporters (Suzuki et al., 2011) and effects

on other genes upon multi-transporter deletion (Khakhina

et al., 2015), we hypothesized that one or more of the trans-

porters inhibits a valinomycin resistance factor outside of the

16 targeted genes.

To formally test whether inhibition of an unknown valinomycin

resistance factor better captures the observed data, we

extended the neural network model by adding a single hidden

node to the A layer, allowing the neural network to model the hy-

pothesized factor if the data support it. Training this extended

neural network using valinomycin data substantially improved

correspondence to the observed phenotypes (r = 0.95, Fig-

ure 5D, right panel) and yielded a model in which SNQ2, PDR5,

YBT1, and YCF1 each negatively influence an unknown valino-

mycin resistance factor. Thismodel improvement was not simply

the result of restricting the training procedure to valinomycin

data but rather depended on the inclusion of this hypothesized

factor (Figure S5E).

Taken together, examination of these neural network models

provided intuition to explain 44/54 (81%) of the observed pair-

wise genetic interactions: 13 as arising from parallel efflux rela-

tionships, 26 as arising from influence relationships, and 5 as

arising from effects on outside factors (Data S6).

Deleting Four Genes Together Causes Synergistic
PDR5-Dependent Fluconazole Resistance
One notable phenotype revealed by XGA was a quadruple dele-

tion—snq2D ybt1D ycf1D yor1D—with high resistance to both

fluconazole (Figure 6A) and ketoconazole (Figure S4). Further

adding a pdr5D deletion to this quadruple mutant background

restored fluconazole sensitivity to a level that was comparable

with pdr5D alone. The quadruple-knockout resistance phenom-

enon was modeled as the combination of three positive three-

gene interactions (all of the three-knockout combinations of

{snq2D, ybt1D, ycf1D, yor1D} except snq2D ybt1D ycf1D), while

its dependence on PDR5 was modeled by three two-way nega-

tive interactions: {pdr5D, snq2D}, {pdr5D, ycf1D}, and {pdr5D,

yor1D} (Figure 6A).

We confirmed these resistance observations in amore uniform

genetic background by generating a single strain for each of the

32 possible combinations of pdr5D, snq2D, ybt1D, ycf1D, and

yor1D knockouts (Figure S6A). The fluconazole resistance esti-

mated from competitively grown XGA pools correlated well

with measures obtained for individual strains—correlation was

r = 0.95 with the fluconazole concentration expected to yield

50% inhibition (IC50; Figure 6B) and was r = 0.89 for fluconazole

resistance (Figure S6A; STAR Methods). Consistent with pooled

results, individual strain assays showed the snq2D ybt1D ycf1D

yor1D strain to have the highest fluconazole resistance.

The neural network model indicated negative influence on

Pdr5 from SNQ2, YBT1, YCF1, and YOR1 (Figure 6C), thereby

capturing the idea that snqD ybt1D ycf1D yor1D should be

more resistant to fluconazole than strains carrying any subset

of these knockouts. We wondered whether these negative influ-

ences stemmed from direct or indirect mechanisms. Given the

known protein-protein interaction between Pdr5 and Snq2
(Snider et al., 2013) and previous reports of improved Pdr5-

dependent drug resistance from knocking out snq2D or yor1D

(Kolaczkowska et al., 2008), one might hypothesize that repres-

sion of PDR5 from these two genes ismediated by direct interac-

tions between transporters.

This hypothesis is further supported by previous reports that

Pdr5 forms a homodimer (Snider et al., 2013; Tarassov et al.,

2008), such that heterodimerization of Pdr5 and Snq2 trans-

porters can draw subunits away from a homodimeric Pdr5

complex and thereby reduce Pdr5 efflux activity. Similarly, ho-

modimers of Snq2 and Yor1 have also been reported (Snider

et al., 2013; Tarassov et al., 2008). However, in addition to the

known heterodimeric interaction between Pdr5 and Snq2,

viewing our data through the lens of this model would also pre-

dict a previously unreported Pdr5-Yor1 heterodimeric interac-

tion. Because all known protein interaction screening methods

miss the majority of real interactions (Braun et al., 2009), we

tested the predicted Pdr5-Yor1 interaction using two distinct as-

says: MYTH (Paumi et al., 2008; Snider et al., 2010) and PCA

(Tarassov et al., 2008). Although PCA (Figure S6B) did not detect

this Pdr5-Yor1 interaction, it was detected by MYTH (Figures 6C

and S6C), thus confirming a key prediction of the direct repres-

sion model for the Pdr5-dependent decrease in fluconazole

resistance provided by YOR1. All previously known MYTH and

PCA interactions among Pdr5, Snq2, and Yor1 (including homo-

dimers) were also recovered (Figures 6C and S6B and S6C).

While direct negative influence via protein interaction is an

attractive model which successfully predicted an unreported

protein interaction, previous studies suggest the importance of

indirect negative influence at the transcriptional level. For

example, a previous study found that while pdr5D and yor1D

each resulted in increased benomyl resistance, combining

them in a pdr5D yor1D strain resulted in non-additive SNQ2

mRNA induction (Snider et al., 2013). Similarly, there is evidence

for increasedPDR5 transcript levels in yor1D snq2D (Kolaczkow-

ska et al., 2008). Such indirect multi-knockout transcriptional re-

sponses would result in non-additive influence effects that would

not be well-captured by our original neural network. Indeed,

while the neural network largely captured one- and two-

knockout effects, there were several three- and four-deletion

strains showing greater resistance than was captured in the

model (Figure 6D).

To assess the potential importance of indirect negative influ-

ences, we extended the neural network model by adding a sin-

gle hidden node between the G and A layers (Figure S6D). This

extra node allows the neural network to capture more complex

influence effects by learning (should the data support it) that

these four genes can modulate the activity of a hidden ‘‘influ-

ence mediator’’—e.g., the transcription factor complex Pdr1/3

known to regulate ABC transporters (Nawrocki et al., 2001)—

which can in turn influence the activity of Pdr5. This extended

neural network, trained using only fluconazole data, assigned

substantial weights to the indirect influence mediator node

(Figure 6E), and yielded fluconazole resistance that better

modeled the unexpectedly resistant three- and four-knockout

strains (Figure 6F). We confirmed that this improvement did

not simply stem from training only on fluconazole data but

rather required the indirect influence mediator node (Figures

S6D and S6E).
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Figure 6. Deciphering a Complex Fluconazole Resistance Trait
(A) Normalized fluconazole resistance is shown for strain groups corresponding to all combinations of five ABC transporter knockouts (as in Figure 3). Single-gene

and interaction coefficients (from Figure 4) are highlighted for selected strain groups.

(B) Measures of fluconazole resistance derived by en masse analysis of pooled strains agree closely with individually measured resistance (IC50) values in

independently constructed strains. See also Figure S6A.

(C) The neural network model (Figure 5B) predicts negative influence on Pdr5 by Snq2, Yor1, Ybt1, and Ycf1. Protein-protein interaction evidence supporting the

plausibility of direct repression of Pdr5 by Snq2 and Yor1 is overlaid. This study confirmed all previously known PPIs shown, and revealed an unreported Pdr5-

Yor1 PPI predicted by the direct interaction model. See also Figures S6B and S6C.

(D) Highlighted multi-knockout strains show more resistance than predicted by the direct influence model.

(E) An extended fluconazole resistancemodel captures both the direct (I1weights) and indirect (I2weights) influence of four transporters on Pdr5 activity. See also

Figure S6D.

(F) Modeling both direct and indirect influence improves prediction of resistant multi-knockout groups.

(G) The synergistic effect on Pdr5 activity from deleting four ABC transporters is primarily explained by an indirect influence on PDR5 transcript levels. Gray bars

represent PDR5 expression in the specified genotype, relative to that of wild-type, with error bars indicating standard error (n = 3). Significance was assessed by

t-test. Colored bars showmodel-inferred Pdr5 activity (Figure 6E) for each genotype, relative to that of wild-type, considering all (red) or only the indirect (orange)

influences.
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To experimentally test whether the effect of the fluconazole-

resistant quadruple mutant is explained (at least in part) by

non-additive influence on PDR5 transcript levels, we used qRT-

PCR to measure PDR5 mRNA levels in two double-knockout

strains—snq2D yor1D, bearing deletions of two transporters

localized in the plasma membrane, and ybt1D ycf1D, bearing de-

letions of two transporters localized in the vacuole—aswell as the

hyper-resistant quadruple knockout (snq2D ybt1D ycf1D yor1D).

Based on the neural network model, snq2D yor1D and ybt1D

ycf1Dwere expected to have only weak increases in Pdr5 activity

relative to the wild-type (1.33 and 1.23, respectively), while a

strong increase (2.83) was expected for snq2D ybt1D ycf1D

yor1D (Figure 6G). Weaker effects were expected when consid-

ering only ‘‘indirect’’ influences from the hidden mediating factor

(1.13, 1.03, and 2.13 for snq2D yor1D, ybt1D ycf1D, and snq2D

ybt1D ycf1D yor1D, respectively) (Figure 6G). Using qRT-PCR,

we found PDR5 mRNA levels to be significantly higher in snq2D

ybt1D ycf1D yor1D relative to the wild type (precisely the ex-

pected 2.13 increase; p = 0.032; Figure 6G) but not in either

snq2D yor1D or ybt1D ycf1D (Figure 6G). Although a �1.53 in-

crease in PDR5 mRNA levels had been previously reported for

snq2D yor1D (Kolaczkowska et al., 2008), here the experimentally

measured �1.33 change did not achieve statistical significance

(p = 0.27; Figure 6G), and the previous report of this phenomenon

did not contain a statistical test. Overall, the observed PDR5

expression changes were consistent with the relative indirect in-

fluence on activity expected from the extended neural

network model.

Taken together, these results support the idea that both of two

different influencemechanisms are occurring: one in which Snq2

and Yor1 each directly inhibit Pdr5 via protein interaction and

another in which the presence of each of four transporter genes

can indirectly inhibit Pdr5 activity via PDR5 expression.

DISCUSSION

Here we described XGA, a general strategy using systematic

high-order combinatorial genetic engineering and multiplexed

profiling to provide functional models of complex traits.

Applying a specific genetic-cross-based implementation of

XGA to 16 yeast ABC transporters uncovered complex genetic

phenomena that were not evident from single and double gene

knockout effects. Furthermore, XGA data enabled the genera-

tion of objectively-learned functional system models.

The XGA strategy, as we implemented it in yeast, can generate

a combinatorially complex population by using individuals that

differ at multiple loci. This cross-based approach contrasts

SGA, which is efficient for generating double-mutant strains at

many loci, but requires labor-intensive methods to individually

engineer query strains with larger numbers of knockouts (Kuzmin

et al., 2018). Similar cross-based methods have been applied

extensively to pairs of outbred parents for mapping quantitative

trait loci (QTLs) (Bloom et al., 2013). By using parents that differ

only at a handful of positions, XGA can achievemuch greater sta-

tistical power thanQTL studies and can straightforwardly identify

causal alleles by ensuring the absence of other proximal variants

in genetic linkage. The use of engineered variants also allows

XGA to study gene sets for which functional variation is not pre-

sent in natural isolates (Lee et al., 2014).
As the genotyping strategy described here could also be

applied to engineered point mutants, XGA could potentially be

employed for a highly combinatorial study of prioritized QTL

variants (Sadhu et al., 2016) in a more uniform genetic back-

ground. As natural variants can lead to gain-, change-, or reduc-

tion-of-function as opposed to strictly loss-of-function mecha-

nisms for the null alleles that we studied, modeling natural

variation will require learning the activity and influence of specific

alleles from data, as opposed to setting these to zero as we did

for knockout alleles. XGA could also be used to evaluate the

evolutionary accessibility of alternative ‘‘trajectories’’ of geno-

typic change (e.g., Figures 2D, 2E, and 3) that transition from

one combinatorial genotype to another via serial addition of suc-

cessive naturally occurring mutations (Ferretti et al., 2018).

A cross-based XGA strategy has broader potential for use with

multiple variants of other gene sets. For example, there are 80

yeast gene families in S. cerevisiae with six or more genes that

might be studied using multiple deletions (Suzuki et al., 2011).

Other functionally related sets of genes can also be studied

with XGA, as many such gene sets are likely to be strongly en-

riched for both pairwise and three-gene genetic interactions

(Costanzo et al., 2016; Kuzmin et al., 2018). For example, XGA

could be performed using an existing yeast mutant with 16 pher-

omone-response pathway genes deleted (Shaw et al., 2019).

Recent advances in methods for more routine construction of

multi-mutant strains lend themselves to future applications of

XGA. For example, CRISPR has been used to introduce variation

into yeast cells at up to five loci with a single transformation (Ja-

ko�ci�unas et al., 2015). Simultaneous variant engineering at 3–6

loci has been described inmulticellular organisms, e.g., inmouse

(Wang et al., 2013), zebrafish (Jao et al., 2013), C. elegans (Xu

et al., 2016), and Arabidopsis (Zhang et al., 2016). As it may

not be convenient (or compatible with viability) to introduce all

targeted variants within a single individual, targeted variation

may instead be distributed between two parental strains (or

more with the use of multi-generational crosses).

Future implementations of XGA might involve directly engi-

neering a population of cells with diverse combinatorial changes

(Wong et al., 2016; Zeitoun et al., 2017), without the need for ge-

netic crosses. For example, pooled approaches to profile two-

gene combinatorial mutants in human cells (Horlbeck et al.,

2018; Najm et al., 2018; Shen et al., 2017; Wong et al., 2016)

may be expanded to allow for higher combinatorial complexity.

In E. coli and yeast, methods have been designed to combinato-

rially modify multiple loci in a population of cells (DiCarlo et al.,

2013; Wang et al., 2009), and these may be extended to allow

large-scale strain isolation and phenotyping (Zeitoun et al.,

2017, 2015). Single-cell barcoding methods (Dixit et al., 2016)

may also permit sampling a greater number of genotypes—

here, we sampled �8% of 65,536 knockout combinations at

16 genes, while single-cell barcodingmethodsmight be adapted

to profile �105 haploid strains, achieving similar depth for

20 genes.

Many future expansions can be envisioned for the application

of XGA to yeast ABC transporters. Here we showed that a small

set of bioactive small molecules, many of which were selected

without prior knowledge of transporter-substrate relationships,

revealed many roles for PDR5, SNQ2, YOR1, YBT1, and YCF1.

The population engineered in this study readily allows XGA of
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these 16 yeast ABC transporters using additional compounds,

such that using known transporter-substrate affinities may better

reveal roles for the remaining genes. Additional genes could also

be deleted in each pool en masse, thereby expanding XGA tar-

gets (e.g., to include PDR1 and PDR3, which transcriptionally

control several ABC transporters). Higher-content phenotyping

approaches could also provide a richer profile of the cellular

response to ABC transporter perturbation (Khakhina et al., 2015).

In our application of XGA to yeast ABC transporters, all

influences were negative. There is also evidence for negative in-

fluence between ABC transporters in mammals. For example,

ABCC3 increases in expression when ABCC2 is disrupted in

Dubin-Johnson Syndrome (Donner and Keppler, 2001; König

et al., 1999), and ABCG5 and ABCG8 both increase in expres-

sion when ABCG2 (a gene that confers breast cancer xenobiotic

resistance in humans) is knocked out in mice (Huls et al.,

2008). However, there is also evidence that mammalian ABC

transporters can positively influence each other. For example,

ABCA12 improves the stability and abundance of ABCA1 (Fu

et al., 2013). In another example, ABCG5 and ABCG8 form a

functional heterodimer, such that each transporter requires the

other for activity (Graf et al., 2003). Thus, an analogous XGA

of human ABC transporters could yield better understanding of

the involvement and interplay of these genes in metabolite or

catabolite transport and drug resistance.

Here, we used a neural network to infer function from pheno-

typic profiles of combinatorial genotypes. Complex genotype-

phenotype data have often been viewed as a network, with edges

either representing genetic interactions or similarity between

genetic interaction profiles (Costanzo et al., 2010). While these

representations have been useful, new approaches are needed

to convey functional information from the phenotypes of higher-

order mutant combinations. It seemed clear that among four

different ways to visualize XGA results (Figures 2D, 3, 4, and

5B), here the ‘‘visible neural network’’ model inspired by previous

work (Ma et al., 2018) was the most useful and intuitive represen-

tation. Where epistasis analysis has been more narrowly focused

on determining the order of genes within pathways (Angeles-Al-

bores et al., 2018; Boettcher et al., 2018; St Onge et al., 2007),

here we could quantitatively model relationships between ABC

transporters that did not clearly follow an ordered pathway.

The neural network structure we employed may be appro-

priate for other transport processes, but future XGA studies

will generally need to tailor neural networks that model genetic

interactions based on prior understanding of gene functions,

including a consideration of potential unobserved factors. For

example, it has been shown that two mutations in a given

protein can additively affect thermodynamic stability to yield

non-additive effects on overall function (Diss and Lehner,

2018; Sarkisyan et al., 2016). Here, we modeled an analogous

phenomenon, that independent effects of transporter knock-

outs on two unobserved factors—drug efflux activity and be-

tween-transporter influence—can have non-linear effects on

phenotype, resulting in complex genetic interactions. In the

case of fluconazole resistance, a set of complex genetic inter-

actions involving five transporters could be simply modeled as

one fluconazole-effluxing transporter (Pdr5) and four trans-

porters that each independently modulate an unobserved

Pdr5 regulator (Figure 6E).
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In summary, we described a general XGA strategy for profiling

and modeling high-order genotype-to-phenotype relationships,

implemented a version of XGA in yeast, and showed that it can

help functionally dissect and understand a complex system.
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Lucau-Danila, A., Anderson, K., André, B., et al. (2002). Functional profiling of

the Saccharomyces cerevisiae genome. Nature 418, 387–391.

Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchison, C.A., and

Smith, H.O. (2009). Enzymatic assembly of DNA molecules up to several

hundred kilobases. Nat. Methods 6, 343–345.

Gietz, R.D., and Schiestl, R.H. (2007). High-efficiency yeast transformation us-

ing the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34.

Graf, G.A., Yu, L., Li, W.P., Gerard, R., Tuma, P.L., Cohen, J.C., and Hobbs,

H.H. (2003). ABCG5 and ABCG8 Are obligate heterodimers for protein traf-

ficking and biliary cholesterol excretion. J. Biol. Chem. 278, 48275–48282.

Haber, J.E., Braberg, H., Wu, Q., Alexander, R., Haase, J., Ryan, C., Lipkin-

Moore, Z., Franks-Skiba, K.E., Johnson, T., Shales, M., et al. (2013).

Systematic triple-mutant analysis uncovers functional connectivity between

pathways involved in chromosome regulation. Cell Rep. 3, 2168–2178.

Hartman, J.L., Garvik, B., and Hartwell, L. (2001). Principles for the buffering of

genetic variation. Science 291, 1001–1004.

Horlbeck, M.A., Xu, A., Wang, M., Bennett, N.K., Park, C.Y., Bogdanoff, D.,

Adamson, B., Chow, E.D., Kampmann, M., Peterson, T.R., et al. (2018).

Mapping the genetic landscape of human cells. Cell 174, 953–967.e22.

Huls, M., Brown, C.D.A., Windass, A.S., Sayer, R., van den Heuvel, J.J.M.W.,

Heemskerk, S., Russel, F.G.M., and Masereeuw, R. (2008). The breast cancer

resistance protein transporter ABCG2 is expressed in the human kidney

proximal tubule apical membrane. Kidney Int. 73, 220–225.
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STAR+METHODS
KEY RESOURCES TABLE
Reagent or Resource Source Identifier

Chemicals, Peptides, and Recombinant Proteins

fluconazole Sigma-Aldrich F8929

ketoconazole Sigma-Aldrich K1003

miconazole Sigma-Aldrich 1443409

itraconazole Sigma-Aldrich I6657

beauvericin Sigma-Aldrich B7510

tamoxifen Sigma-Aldrich T5648

benomyl Sigma-Aldrich 45339

cycloheximide Sigma-Aldrich C1988

methotrexate Sigma-Aldrich M9929

camptothecin Sigma-Aldrich C9911

cisplatin Sigma-Aldrich P4394

bisantrene Sigma-Aldrich B4563

mitoxantrone Sigma-Aldrich 6545

colchicine Sigma-Aldrich 9754

imatinib Sigma-Aldrich 270784

valinomycin Sigma-Aldrich V3639

Deposited Data

High-throughput sequencing reads generated for en masse

genotyping and BarSeq

This Paper, SRA SRA: PRJNA535622

Experimental Models: Organisms/Strains

RY0622 Suzuki et al., 2011 N/A

RY0146 Suzuki et al., 2011 N/A

RY0566 Suzuki et al., 2011 N/A

RY0148 Suzuki et al., 2011 N/A

Barcoded RY0148 pool This paper N/A

Oligonuclides

All DNA primers used, see Data S1 This paper Data S1

Recombinant DNA

Plasmid: pSH47 Euroscarf P30119

Plasmid: pIS420 Euroscarf P30575

Software and Algorithms

Analysis pipeline (written in R) This paper https://github.com/a3cel2/xga

R 3.4.3 R Core Team https://www.r-project.org/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Frederick

P. Roth (fritz.roth@utoronto.ca). All unique/stable reagents generated in this study are available from the Lead Contact without

restriction.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Saccharomyces Cerevisiae Strains
RY0622 (ABC-16/‘Green Monster’ MATa)

MATa adp1D snq2D ycf1D pdr15D yor1D vmr1D pdr11D nft1D bpt1D ybt1D pdr18D yol075cD aus1D pdr5D pdr10D pdr12D

can1D::GMToolkit-a (CMVpr-rtTA KanMX4 STE2pr-Sp-his5) his3D1 leu2D0 ura3D0 met15D0
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RY0146 (‘‘Toolkit-a’’ Strain)

MATa lyp1D his3D1 leu2D0 ura3D0 met15D0 can1D::GMToolkit-a (CMVpr-rtTA KanMX4 STE2pr-Sp-his5)

RY0566 (‘‘Toolkit-a’’ Strain with Tet-inducible GFP-URA3)

MATa lyp1D his3D1 leu2D0 ura3D0 met15D0 can1D::GMToolkit-aA (CMVpr-rtTA KanMX4 STE2pr-Sp-his5) hoD::tetO2-GFP-URA3

RY0148 (‘‘Toolkit-a’’ Strain)

MATa lyp1D his3D1 leu2D0 ura3D0 met15D0 can1D::GMToolkit-a (CMVpr-rtTA NatMX4 STE3pr-LEU2)

Barcoded RY0148 Pool

MATa lyp1D his3D1 leu2D0 ura3D0 met15D0 can1D::GMToolkit-a (CMVpr-rtTA NatMX4 STE3pr-LEU2) hoD::loxP UP-tag HphMX4

DN-tag lox2272

METHODS DETAILS

Creating the Barcoder Plasmid
We added a ‘barcoder’ locus flanked by loxP and lox2272 into a pSH47 plasmid backbone expressing GAL1pr-CRE. This barcoder

locus consisted of a random 25bp DNA sequence (‘UP tag’) in between two common primer regions (‘US1’ and ‘US2’), followed by a

HphMX4 cassette, and another random 25bp DNA sequence (‘DN tag’) in between two common primer regions (‘DS1’ and ‘DS2’).

This entire locus was flanked by loxP and lox2272 sites.

To construct this locus, a barcoded HphMX4 construct was first created (Figure S1A). HphMX4 was amplified from a pIS420

plasmid using the STEP1F andSTEP1Rprimers containingHphMX4 homology andUS2/DS1 overhangs (Data S1). The PCRprogram

used for this step was 98�C for 30sec; 25 cycles of 98�C for 10sec, 59�C for 10sec, 72�C for 60sec; 72�C for 5min; hold at 4�C. These
PCR products were purified using a QIAprep SpinMiniprep Kit (QIAGEN, 27106) and confirmed using 2%gel electrophoresis. To add

the random barcodes and US1/DS2 regions to the resulting HphMX4 amplicon, the STEP2F and STEP2R primers were used with the

following PCR program: 98�C for 30sec; 25 cycles of 98�C for 10sec, 68�C for 10sec, 72�C for 60sec; 72�C for 5min; hold at 4�C.
These resulting products were again purified using a QIAprep Spin Miniprep Kit and �1.5-1.6kb products were confirmed using

2% gel electrophoresis. To add loxP/lox2272 sites, PCRwas performed with the STEP2 products using the SacI-loxP-HphMX4-Bar-

code-F / SacI-lox2272-HphMX4-Barcode-R primers. The PCR program used for this step was: 98�C for 30sec; 26 cycles of 98�C for

15sec, 64�C for 20sec, 72�C for 65sec; 72�C for 5min; hold at 4�C. The resulting PCR products were purified using a QIAprep Spin

Miniprep Kit, and �1950bp products were confirmed using 2% gel electrophoresis.

To confirm correct synthesis of the barcoded HphMX4 construct, two PCR reactions were performed on the resulting products.

The first PCR reaction was performed with the SacI Reamp F/US2 primer pairs, and the second was performed using DS1/SacI

Reamp R primer pairs. The PCR program used for both of these reactions was: 98�C for 30sec; 25 cycles of 98�C for 10sec,

59�C for 15sec, 72�C for 30sec; 72�C for 5min; hold at 4�C. Expected sizes (�132bp, 137bp) were confirmed using 4% gel electro-

phoresis. All of the above PCR reactions were performed using High Fidelity Phusion Master Mix (NEB, M0531).

To prepare for cloning of the barcoder locus, pSH47 was digested with SacI using 100ml of 250ng/ml pSH47, 100ml NEBuffer 4

(NEB, B7004S), 10ml BSA (NEB, B9000), 10ml SacI-HF in 1ml sterile water. 100ml of this mixture was incubated at 37�C for two hours,

and inactivated by incubation at 65�C for 20min. Digest products were purified using a QIAprep Spin Miniprep Kit and confirmed us-

ing 0.8% gel electrophoresis.

Generating a Barcoder Strain
A linear URA3 cassette flanked by loxP and lox2272 sites and homology to the HO gene was amplified from purified pIS418 with the

5’HO-loxP-URA andURA-lox2272-3’HO primers using the following PCRprogram: 98�C for 30sec; 25 cycles of 98�C for 10sec, 60�C
for 10sec, 72�C for 70sec; 72�C for 5min; hold at 4�C. This PCR reaction was performed using High Fidelity Phusion Master Mix and

was purified using a QIAprep Spin Miniprep Kit. This cassette was integrated into the HO locus of the RY0148 strain through trans-

formation using an EZ transformation kit (Zymo Research, T2001), to serve as the ‘landing pad’ for barcode integration. Transform-

ants selected for growth in SC –Ura plates, and were later verified to exhibit no growth in 5-FOA. A transformant was selected to

confirm HO locus integration using three PCR reactions with the following primer pairs: 5’HO-URAreamp + midURA-5’; 5’HO-

URAreamp + midURA-3’; 5’HO-URAreamp + 3’HO-URAreamp. All PCR reactions were performed using High Fidelity Phusion Mas-

ter Mix with the following program: 98�C for 30sec; 25 cycles of 98�C for 10sec, 50�C for 10sec, 72�C for 70sec; 72�C for 5min; hold at

4�C. Expected PCR product size was confirmed using 2% gel electrophoresis.

The HO::loxP-URA3-lox2272 integrant strain was then transformed with a mixture of digested pSH47 and purified PCR products

(Figure S1B) to enable in-yeast-assembly (Gibson et al., 2009). Transformation was carried out using a previously established pro-

tocol (Gietz and Schiestl, 2007), with a�1:6mixture of digested pSH47:HphMX4 barcode cassette (�12mg digested pSH47 and 15mg

cassette). Transformants were grown at 30�C in YPG +HygroB plates for 3 days, allowing both selection of successful transformants

and Gal1p-Cre induction. These cells were then scraped and grown overnight in 5-FOA plates to select against non-recombinant

strains and strains containing the barcoder plasmids.

Twenty colonies were confirmed to have barcode integration using PCR and Sanger sequencing. Lysates were made by mixing a

sample of each colony with 2ml Sterile DNA Free Water, 2ml 0.2M pH 7.4 Sodium Phosphate Buffer, 0.5 ml 5U/ml Zymo Research

zymolyase and incubated at 37�C for 25min and 95�C for 10 min, and stopped by adding 125ml of sterile DNA-free water. To

each lysed colony, two sets of primer pairs to verify the strain barcode-specific UP and DN tag - US2 and a sequence complementary
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to 5’ of the HO gene (5’HO); DS1 and a sequence complementary to the 3’ of the HO gene (3’HO), using the following program: 98�C
for 30sec; 25 cycles of 98�C for 10sec, 59�C for 15sec, 72�C for 30sec; 72�C for 5min; hold at 4�C. PCR reactions were performed

using High Fidelity Phusion Master Mix and analyzed using gel electrophoresis. EXOSAP-IT purification (Thermo Fisher, 78201) was

performed on the PCR products, and they were Sanger sequenced with the 5’HO seq and 3’HO seq primers to confirm the correct

barcode construct.

Creating a ‘Gold Standard’ Genotyped Set
To create a ‘Gold Standard’ genotyped set, 40 progeny strains (19 MATa and 21 MATa) were subject to individual strain genotyping.

For these 40 strains, and for an RY0148 isolate, the strain-specific UP andDN tagswere also PCR-amplified using two sets of primers

and subjected to Sanger sequencing as above.

To genotype each strain at the 16 ABC transporter loci, two PCR reactions were performed for each locus - one to determine the

presence of a GFP integration cassette, and another to determine the presence of thewild type gene, as previously described (Suzuki

et al., 2011). For the cassette confirmation reactions, locus–specific PCR primers from the 50 flanking sequences of each gene were

paired with a common primer complementary to the GFP cassette (Data S1). Gene presence confirmation primers were designed

individually for each gene (Data S1). PCR reactions were performed with a Platinum PCR SuperMix High Fidelity (Thermo Fisher,

12532016) using the following program: 94�C for 2min; 34 cycles of 94�C for 30sec, 55�C for 30sec, 68�C for 60sec; 68�C for

10min; hold at 4�C. PCR products were analyzed using gel electrophoresis.

Generating Barcoded Random Knockout Progeny
Mating, sporulation, and haploid selection was performed between the RY0622 ‘Green Monster’ strain (MATa) and the barcoded

RY0148 pool (MATa) as previously described (Suzuki et al., 2011), selecting for MATa and MATa progeny separately. The two pools

were then grown in YPD +HygroB to select for barcoded haploids. The SC–Leu pool was further grown in SC–Ura to select against

barcoder strain parents that may have escaped diploid selection. Using a QPix� 400 Microbial Colony Picker (Molecular Devices),

5,461 MATa and 5,461 MATa colonies were picked onto 384 well plates. In addition, 299 known positions in both the MATa and

MATa arrayed collections consisted of known strains – either one of 40 ‘Gold Standard’ genotyped strains, RY0148, or RY0622 –

to act as genotyping controls (Data S2).

Pooled Strain Genotyping
A previously-described Row-Column-Plate (RCP)-PCR protocol (Yachie et al., 2016) was adapted in order to perform en-masse gen-

otyping of the random knockout progeny using high throughput sequencing. This protocol first uniquely tags PCR products origi-

nating from the same well on a given plate, by the use of a 5’ tag encoding the well row (R) in forward primers, and a 3’ tag encoding

the well column (C) in the reverse primers (Yachie et al., 2016). Additionally, these primers contain a linker sequence (PS1 or PS2)

which were used subsequently to amplify barcode locus amplicons that have been pooled for each plate while incorporating indices

that encode the plate of origin (Data S1).

For each well in the collection, lysates were made on a new set of plates. 4 ml of overnight yeast culture was mixed with 8 mL 0.2 M

sodium phosphate buffer (pH 7.4), 4 ml DNA free dH2O, 0.05 ml 5 U/ml zymolyase (Zymo Research, E1005) and incubated at 37 �C for

35 minutes. 64 ml DNA free dH2O was added to each well to prepare PCR template.

Four ‘Row-Column’ PCR reactions were performed on the lysates with the following primer pairs: PS1+R+U1 and PS2+C+U2 to

amplify DNA barcodes encoding the UP tags for each gene deletion; PS1+R+D1 and PS2+C+D2 to amplify the deletion-specific DN

tags; PS1+R+US1 and PS2+C+US2 to amplify the strain-specific UP tag; PS1+R+DS1 andPS2+C+DS2 to amplify the strain-specific

DN tag (Data S1). PCR reactions were performed with 2 ml of lysed colonies using a Hydrocycler Thermal Cycler (KBioscience) with

the following program: 95 �C for 5 min; 23 cycles of 95 �C for 60 sec, 57 �C for 35 sec, 72 �C for 45 sec; 72 �C for 2 min; hold at 4 �C.
Row-Column PCR products from each plate were pooled and size was verified on a 4% agarose gel. PCR products from each plate

were combined, and Illumina adapters containing plate-identifying tags were added using an additional PCR reaction as previously

described (Yachie et al., 2016). A pair of PXX_PE1.0 and PYY_PE2.0 primers (Data S1) were added to 3-6 ml pooled products (cali-

brated to �150 ng) from each plate to encode the plate of origin, and were amplified using the following PCR program: 98 �C for 30

sec; 15 cycles of 98 �C for 10 sec, 59 �C for 15 sec, 72 �C for 40 sec; 72 �C for 2 min; hold at 4 �C. All PCR reactions above were

performed using High Fidelity Phusion Master Mix.

Expected product size from the plate tags was confirmed on 4% agarose gel. PCR products were purified using a QiagenMinElute

Gel Extraction kit (QIAGEN, 28604), and qPCR was performed on all plate tag PCR products using a LightCycler 480 (Roche) and

KAPA SYBR FAST qPCR Kit (Roche). qPCR results were used to generate a pool with approximately equal amounts of each sample,

and 100 ml of this multiplexed sample were run on a 4% gel. Products of the desired size (260-290 bp) were isolated from each lane,

purified using a QIAGEN MinElute Gel Extraction kit, and another qPCR was run on the purified sample.

Analysis of Pooled Strain Genotyping Data
Pooled strain-genotyping PCR products were sequenced using an Illumina HiSeq 2000, and the reads were demultiplexed into

individual samples corresponding to a plate and well of origin.
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For each sample, a genotype calling pipeline determined the strain-specific tag sequences and genotype from the reads. The

parameters of this pipeline were trained based on known reference strains. Cross-validated accuracy for each gene is reported in

Figure S1C.

UP or DN tag identity at the strain-identifying barcode locus and a corresponding genotype was successfully determined for 7,195

samples. For 7,030 samples, either the UP or DN tag was unique, while for 165 samples, both of the strain-identifying UP and DN tag

sequences were the same as those in another sample where the called genotype was isogenic or highly similar (% 2 differences),

indicating the presence of a single strain in multiple wells. Where genotypes were highly similar, one of the genotypes was randomly

assigned to the strain-identifying-barcode sequences.

Genotype Refinement
For 131 MATa and 73 MATa strains, pooled sequencing analysis had called the genotype as wild-type. Many of these strains were

isolated and tested for the presence of one or more gene knockout cassettes by growth in SC–Ura. Of 96 MATa strains tested, 74

exhibited no detectable growth in SC–Ura (indicating the absence of any knockout cassettes), and likely arose from remaining

barcoder parents which had escaped a previous SC–Ura selection step (Data S2). The genotypes for these 74 strains were kept

as is, while the other 23 strains, as well as 46 untested strains were discarded from the analysis (Data S2). Out of 45 MATa strains,

all exhibited growth in SC–Ura (indicating a knockout cassette at one or more loci, Data S2). Individual genotyping was performed for

these MATa strains, and was successful for 40 of 45 strains, confirming the lack of true wild types. These strains had their genotype

corrected (Data S2). The 5 unsuccessfully genotyped strains, as well as 28 apparently-wild-type but untested MATa strains were

discarded from analysis. When calculating linkage and distribution of gene knockouts (Figure S1D), the wild-type MATa strains

were also excluded from analysis.

Secondary Estimate of Genotyping Accuracy
To lend independent support to the genotyping accuracy determined by gold standard strains, an alternate method based on the

distribution of knockouts in the population was used. Since en masse genotyping associates barcode sequences with ABC trans-

porter knockouts, the absence of a given barcode implies either a wild-type genotype at that locus or a failure in amplification,

sequencing, or calling. Conversely, cases where a wild-type is assigned a mutant genotype are expected to be comparably rare.

Excess wild-type calls lead to a reduction in the average number of knockouts in the pool, and can be used to estimate genotyping

accuracy. The average number of knockouts in the pool was 7.0, lower than the 8 expected with perfect genotyping. If wild-type to

mutant miscalls are negligible, this number is most likely with an ‘asymmetric’ genotyping accuracy of 93.8%, compared to the

93.2% estimated by comparison to gold standards (Figure S1D).

Individual Liquid Growth Profiling
To measure individual strain growth, 100ml of starting culture at 0.0625 OD600nm was grown in a 96 well-plate in a temperature-

controlled shaking spectrophotometer (Tecan GENios microplate reader). Growing cultures were shaken at 800 rpm at 30�C and

OD600nm of each well was measured every 15 min.

Pool Growth Profiling by Barcode Sequencing
Progeny with at least one mapped strain-identifying barcode (Data S2) were combined into two separate liquid YPD + 15% glycerol

pools separated by mating type, and kept at �80�C. Samples from the original YPD + glycerol pool were thawed and added to the

appropriate drug or DMSO solvent-containing medium at a final concentration of 0.0625 OD600 nm in 10ml. In addition, a ‘0 gener-

ation’ sample was immediately harvested from the YPD + glycerol pool and processed for DNA extraction and sequencing. After

growth to approximately 2 OD600 nm (�5 generations), cells were collected and processed for sequencing, and a small aliquot

was diluted in fresh media (at a final concentration of 0.0625 OD600 nm in 10ml) in presence of drug or solvent to be grown for an

additional 5 generations. This process was performed twice – once with sequenced samples corresponding to approximately 0,

5, and 15 generations, and a second time with sequenced samples corresponding to approximately 0, 10, and 20 generations.

Harvested samples were subjected to genomic DNA extraction using a YeaStar� Genomic DNA Kit (D2002, Zymo Research),

quantified using the Quant-IT dsDNA BR Assay kit (Invitrogen, Q32853), and diluted to a final concentration of 25 ng/ml. 350ng of

DNA from each sample was indexed with the following PCR mixture: 20 ml of 2x Platinum PCR SuperMix High Fidelity, 1 mL of

10 mM F primer, and 1 ml of 10 mM R primer. F and R primer pairs were PXX+US1/PYY+US2 and PXX+DS1/PYY+DS2 for the

strain-specific UP and DN tag, respectively. PXX and PYY correspond to sequences containing plate-specific Illumina sequencing

adapters, as well as tags which were used to demultiplex the samples (Data S1). PCR products were amplified using the following

program: 98 �C for 30 sec; 24 cycles of 98 �C for 10 sec, 60 �C for 10 sec, 72 �C for 1 min; 72 �C for 5 min; hold at 4 �C. After indexing,
equal volumes of UP-tag and DN-tag PCR products from each pool were run on a 3% agarose gel. The expected 210bp bands were

isolated and purified using a QIAGEN MinElute Gel Extraction kit. DNA size and purity were confirmed by Agilent Bioanalyzer High

Sensitivity DNA kit (5067-4626). DNA yield was quantified in triplicate using a KAPA SYBR FAST Universal qPCR kit (KK4824).

Approximately equal amounts of each sample were combined and sequenced using an Illumina NextSeq 500 High Output v2 kit.
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Targeted Mating to Obtain 32 Knockouts
The TWAS21230902 strain (genotyped as pdr10D pdr18D pdr5D snq2D ybt1D ycf1D yor1D by RCP-PCR; Data S2) was subject to

individual strain genotyping (Suzuki et al., 2011), which confirmed the expected wild-type and knockout PCR products at each locus.

This strain (MATa) was mated with RY0566 (MATa), and was subject to sporulation and MATa haploid selection (Suzuki et al., 2011).

Individuals from this cross were arrayed onto 96 well plates, and individually genotyped at PDR10 and PDR18. Strains with no de-

letions at these genes were further genotyped at PDR5, SNQ2, YBT1, YCF1, and YOR1. PCR reactions for individual genotyping of

these progeny used the QIAGEN Multiplex PCR Plus Kit (206152) with the following program: 95�C for 5min; 34 cycles of 95�C for

30sec, 57�C for 30sec, 72�C for 30sec; 68�C for 10min; hold at 4�C. After analysis of genotyping results, one strain of each genotype

combination was chosen to create the 32-strain collection. These chosen 32 strains were again individually genotyped at these 5 loci

for validation.

Pre-processing Data from BarSeq Assays
Paired-end Illumina sequencing data were first de-multiplexed by searching for an exact match to the tag regions of the PXX and

PYY primers within each pair of reads. For each read in each de-multiplexed sample (corresponding to a combination of

mating type, timepoint, and drug), strain identification is attempted by searching a reference database of all barcodes matching

the sample mating type. If an exact match is not found, up to two ungapped mismatches are permitted to assign a putative

strain identity, which is then accepted if there are at least 2 additional mismatches separating this identity with the next closest

match (e.g. if 2 mismatches are present with the closest match, then the next closest match must have 4 or more mismatches).

This process was performed for both the forward and reverse reads (corresponding to the UP and DN tags) for each strain (potential

cases where the putative strain identity differed between tags were discarded). All samples for which fewer than 200,000 reads could

be mapped either to an UP or DN tag were discarded. Because t = 0 samples were collected twice, counts from both runs were

summed.

Deriving Resistance Measures from BarSeq
After pre-processing BarSeq data, a count ct;sx ;d was derived at each timepoint t, for each strain sx, in each drug pool d. Each count in

each sample was then converted to a frequency ft;sx ;d with division by the total count across all strains in that sample:

ft;sx ;d =
ct;sx ;dPn
i = 1ct;si ;d

If both an UP and DN tag for a given strain were successfully linked to a genotype, ft;sx ;d estimates were calculated separately with

the counts from each tag, and the resulting ft;sx ;d estimates were averaged. Otherwise, only the available tag was used for this

calculation.

Using these counts, we aimed to estimate an exponential growth rate for each strain under each drug ðbgsx ;dÞ. Here, bgsx ;d represents

the expected number of doublings per given time-point. First, we model the expected abundance of each strain in a drug at a time

point ðbAt;sx ;dÞ, given an exponential growth rate and initial abundance ðA0;sx ;dÞ.bAt;sx ;d =A0;sx ;d2
bgsx;dt

Using barcode counts, we measured f0;sx ;d. This frequency is proportional to an absolute starting abundance metric (A) for each

strain (e.g., number of cells). Therefore, the above relationship can be restated as:

bAt;sx ;d = ðk,f0;sx ;dÞ2bgsx ;dt

We use this relationship to fit bgsx ;d to the observed abundance data ðAt;sx ;dÞ. To calculate abundance, we use frequency at each

time point, multiplied by the expected relative cell count of the pool compared to time 0.We define tas the number of pool generations

since t = 0, so that the relative abundance vs t = 0 can be expressed as 2t. For example, a strain with with 1/100 frequency will corre-

spond to N/100 cells (where N is the starting number of cells) at t = 0, but 2N/100 cells after one generation of growth, since the total

number of cells in the pool have doubled once. The same rescaling constant k can be used to obtain the same units as bA:
At;sx ;d = ðk , ft;sx ;dÞ2t

To make use of fsx ;d;t measurements over multiple time points, we integrate all abundance measurements to compute an area un-

der the growth curve ðAUCÞ from timepoints 0 to T (the total number of pool generations measured). Here, frequencies between

measured timepoints were linearly interpolated:

AUCsx ;d = k

Z T

0

ft;sx ;d2
tdt

The estimated area under the growth rate can be similarly computed in terms of fsx ;d;0 and the unknown growth rate gsx ;d:

dAUCsx ;d = k

Z T

0

f0;sx ;d2
bgsx ;dtdt
Cell Systems 10, 25–38.e1–e10, January 22, 2020 e5



Using this relationship between the estimated and observed AUC, we solved for bgsx ;d in the following equation:

k

Z T

0

ft;sx ;d2
tdt = k

Z T

0

f0;sx ;d2
bgsx ;dtdt

Z T

0

fsx ;d;t2
tdt = fsx ;d;0

2bgsx ;dT � 1bgsx ;d
T logð2Þ

Because

Z T

0

fsx ;d;t2
tdt and fsx ;d;0 are both known, we numerically solve for the bgsx ;d which best satisfies this relationship using the

optimize() function in R (with a squared-error loss function). Aminimumof -10 andmaximumof 10were used for the searched interval.

Growth was estimated only for strains that were initially well-represented (average co;sx ;d>30, considering only available tags). The

estimated gsx ;d represents the growth rate relative to the pool as a whole (i.e. a strain with gsx ;d = 1 perfectly keeps up with the

pool). In practice, gsx ;d represents the average relative exponential growth rate from 0 to T. For example, a prolonged lag phasewould

effectively lower the average exponential growth rate. For linear regression and neural network training, theminimum bg is set to 1e-10

to avoid numerical errors in the respective algorithms. To derive the resistance for each strain in each drug ðrsx ;dÞ, the growth rate for

each strain in a given drug gsx ;d is divided by the corresponding growth rate in the DMSO control ðgsx ;DMSOÞ:

rsx ;d =
gsx ;d

gsx ;DMSO

Wenote that experimental uncertainty in the collected generation times t can introduce some scale uncertainty in estimates of rsx ;d,

such that resistance estimates from the MATa and MATa pool may be highly correlated, but may differ in scale for some drugs (Fig-

ure S2). To adjust for any potential pool-of-origin effects in rsx ;d arising frommerging theMATa andMATa populations, we use the line

of best fit derived in Figure S2 to rescale rsx ;d estimates from the MATa pool to match those from the MATa pool before merging rsx ;d
values from the two pools.

Generalized Linear Model of Genetic Effects
To model resistance ðrÞ resulting from multiple genetic perturbations, we adopted the multiplicative model describing how genetic

effects will combine in the absence of genetic interaction (Mani et al., 2008). When applied to two-gene effects, this model expresses

the expected resistance of a double knockout strain ðxDyDÞ in a given drug ðbr xDyD;dÞ as the product of the resistances of the compo-

nent single-knockout strains: br xDyD;d = rxD;dryD;d (Equation 1)

To express this model in an additive form, we state this relationship as an exponentiated sum of the log-resistances of the single

knockouts - logðrsi ;dÞ = lsi ;d, so that: br xDyD;d = exp
�
lxD;d + lyD;d

�
(Equation 2)

The simplest deviation from this model is a two-gene interaction. We define a two-gene interaction term ðεxDyD;dÞ as the log-ratio

between the observed fitness, and the fitness expected by the multiplicative model of single-gene effects. This is used instead of the

previously-described linear difference from a multiplicative estimate (εxDyD;dh rxDyD;d � rxD;dryD;d (St Onge et al., 2007)) to more

readily generalize to higher-order effects:

εxDyD;dhlog

�
rxDyD;dbr xDyD;d

�
(Equation 3)

Using this definition, the observed double mutant fitness can be expressed as the sum of the single-gene effects, and the inter-

action term from 2):

rxDyD;d = exp
�
lxD;d + lyD;d + εxDyD;d

�
(Equation 4)

To estimate the triple-mutant fitness expected from one- and two-gene effects in the absence of three-gene genetic interaction, all

relevant single-knockout terms and two-gene interactions are added:br xDyDzD;d = exp
�
lxD;d + lyD;d + lzD;d + εxDyD;d + εxDzD;d + εyDzD;d

�
(Equation 5)

The three gene interaction term is the deviation from the above expectation from one- and two- gene effects:

εxDyDzD;dhlog

�
rxDyDzD;dbr xDyDzD;d

�
(Equation 6)
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This definition can be extended analogously for interactions of arbitrary complexity, with ε terms denoting interactions between the

corresponding knockouts. Specifically, we fit a generalized linear model to predict the fitness of each strain to a drug, given its

knockout genotype (GD). GD is a subset of 16 ABC transporter knockouts fABC1D. ABC16Dg:

br sx jGD4 fABC1D. ABC16Dg;d = exp

 X
i˛GD

li;d +
X
j4GD

εj;d + cd

!
(Equation 7)

Here, the li;d coefficients are single-knockout resistance effects for a drug, while the εj;d coefficients are interactions between two or

more genes (i.e. subsets of two ormore elements fromGD). cd is an offset term in each drug, and defines the predicted resistance of a

strain with no modeled genetic effects (i.e. a wild-type like strain). We further extended this model to capture potential biases in each

drug associated with the plate-of-origin, assigning a single ‘bias’ (b) coefficient to each strain, given its origin from one of 30

plates (bp):

br sx jGD4 fABC1D. ABC16Dg; p;d = exp

 X
i˛GD

li;d +
X
j4GD

εj;d + cd + bp

!
(Equation 8)

To train this model,GD is encoded as a set of 16 binary variables, where 0 represents a wild-type and 1 represents a knockout at a

given gene. Therefore, to predict phenotype fromGD, the relevant li coefficients are added only if the corresponding gene i is knocked

out, and the εj coefficients are added only if all the genes in subset j are knocked out. For each drug, we fit this model using the glm()

function in R, with ε terms to a chosen level of complexity.

Defining a Neural Network System Model
To model the dependence of drug efflux on transporter genotype, we defined a neural network that learns about influence between

transporters, and the relationship between transporter activities and drug resistance. We structured the neural network model (Fig-

ure 5A) to have three layers: 1) an input layer encoding the binary genotypeG for each of the 16 targeted transporters (G); 2) a middle

‘hidden’ layer encoding values (A; ranging from 0 to 1) that estimate the activity of each of the 16 transporters (A); and 3) an output

layer that quantitatively describes resistance to each of 16 drugs (R; ranging from 0 to 1). To represent regulatory influence relation-

ships between transporters, the links between genotype and activity layers have (initially unknown) ‘influence’ weights (I), with

positive weights where gene presence increases activity and negative weights where gene presence decreases activity. The links

between activity and resistance layers have (initially unknown) non-negative ‘efflux’ weights (E) that capture the extent to which

each transporter can catalyze the efflux (or otherwise reduce the activity) of each drug. The model also allowed for offset terms in

both A and R.

First, we rescaled all resistance measures for each drug to be between 0 – 1 by dividing with the maximum observed resistance

(and setting a minimum of 1e-10):

rnormd
h

rd
maxðrdÞ

We then model a sigmoidal relationship between drug concentration and normalized resistance:

brnormd
=

1

1+ ek½d��a

Here ½d� is the concentration of a given drug, and k, a are unknown constants which define the dose-response curve (such that a
k

yields the expected IC50). This equation defines a baseline dose-response curve for a drug in a strain with no ABC transporters. From

this baseline, the subset of 16 ABC transporters present in a strain iðGi 4fABC1+. ABC16+ gÞ act to additively lower the effective

concentration of a drug (for example, by efflux out of the cell). Thus, each transporter is given a non-negative clearance coefficient C

for each drug, such that:

brnormGi ;d
=

1

1+ ek½d��a�
P

Ci;d

Importantly, a dose-response curve in this form can be expressed as the activation of a sigmoid neuron, where k½d�� a is collapsed

into a single bias term for each drug ðBdÞ, and Ci;d are the weights learned as inputs to this neuron from the ABC transporters. In this

model, each transporter must act to lower effective drug concentration, so we constrain Ci;d to be non-negative.

In addition, we model influence between ABC transporters. To do this, we first decompose the clearance coefficient of each ABC

transporter ðCÞ as the degree of transporter activity (A, a value between 0 and 1), and its potential efflux capacity ðEÞ, so thatC = AE.

Wemodeled a common set of influence relationships across drugs, so that transporter activity is modeled as being dependent onGi,

but not the drug d (Ai). Therefore, Ci;d = AiEi;d, such that for each drug:

brnormGi ;d
=

1

1+ e�
P

AiEi;d�Bd
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Ai allows our model to capture that the activity of each ABC transporter can be additively influenced by other transporters. Each acti-

vation value in a strain ðAj˛Gi
Þ is computed by the influences from other ABC transporters (Ik ):

Aj˛Gi
= f

 X
k˛Gi ;jsk

Ik

!

While the form of the function computing eachAj˛Gi
is itself unknown, here we alsomodeled it as a sigmoidal function for simplicity:

Aj˛Gi
=

1

1+ e
�
P

Ik�BAj

Here, BAj
is an offset term which defines the baseline activation of each transporter in the absence of influence connections.

Learning Neural Network Parameters
To create the above model and learn the I and E parameters from our data, we used the keras library in R to construct a neural

network of the appropriate form.

We first provided the genotype of each strain as the input to the neural network by encodingG in binary form. That is, we created an

input layer of length 16, where each input value will be either 1 (denoting ABC transporter presence), or 0 (denoting a knockout) for

each of fABC1. ABC16g.
We then created a second layer of length 16, where the weights from the input genotype (G) layer to the ‘activity’ (A) layer encode

the influence weights (I) from transporter i to transporter jðIi;jÞ. Learned Ii;j weights are used (along with offset terms BA) to compute

the activity state for each transporter (Aj), given G. Specifically, we created a second activity layer of length 16, and connected each

Gi to each Ajwith a sigmoid activation function, omitting self-self connections. The neural network model multiplies these learned Ii;j
weights byG, such that all outgoing influences from transporter i are set to 0 if it is knocked out. Similarly, we set the activation state of

each transporter in the second layer Aj to 0 if it is knocked out To achieve this, we multiplied A element-wise by G using the layer_-

multiply() function. In addition to enforcing the expected behavior that a transporter should not provide efflux activity if it has been

knocked out, this associates each node in the activity layer with a specific gene, making more interpretable what might otherwise

be a ‘black box’ hidden layer.

To model the efflux weights (E) for each transporter-drug pair Ej;d, we connected the activity of each transporter in the A layer ðAjÞ
with each of 16 drugs in the third resistance (R) layer via links representing sigmoid activation functions. Each R node models the

normalized resistance to each compound ðbrnormG;d
Þ by multiplying Aj with the learned efflux weights Ej;d. A3E computes the clear-

ance coefficients for each drug-transporter pair ðCj;dÞ, which is used along with the learned offset terms for each drug ðBdÞ to

compute R from G. To learn non-negative parameters for E, we used the kernel_constraint argument in keras.

To learn a sparse predictive model, we added L1 regularization (with coefficient l) to the Ii;j and BA weights (both used to

compute A). This avoids learning extraneous weights which do not affect phenotypic predictions. For example, regularization on

Ii;j weights penalizes influence relationships between transporters that do not have any non-zeroEj;d weights. Similarly, regularization

on BA avoids setting the baseline activation for a transporter near 0 by effectively setting a prior to an A (so that it remains close to 0:5

unless otherwise supported by data). This prior on A indirectly penalizes Ej;d weights that do not affect the resulting clearance

coefficients (becauseC = A3 E, E can vary freely if Az0). While more complex regularization schemes can potentially impose three

separate regularization weights for Ii;j, BA, and Ej;d, we found that using a single lcoefficient for regularizing both Ii;j and Bj, without

any further regularization to Ej;d was sufficient for learning a sparse predictive model. Regularization was added to the model using

the kernel_regularizer() argument.

The neural network model was compiled with the mean-squared error (‘mse’) loss function, using the adam optimizer with a

learning rate of 0.05 when training using data for all drugs. When neural network model training was performed using only data

from a single drug, e.g. valinomycin or fluconazole (Figures 5D, 6E, S5E, and S6E), we found empirically that setting the learning

rate to 0.01 lowered variance in parameter values between different training runs. Training was performed for 10,000 epochs, using

a batch size of 30%, and a 10% split between training and validation (validation_split = 0.1).

Extensions to the Neural Network
Based on poor fit of our original model to the valinomycin data, and based on the previous observation that the ABC16 strain is more

resistant to valinomycin than wild-type (Suzuki et al., 2011), we hypothesized that some subset of ABC transporters act to influence

an unknown valinomycin resistance factor. To extend the neural network for valinomycin to capture this scenario (Figure 5D), we

added a single ‘always-present’ factor inG. More specifically, we added one extra variable toG and set its value to 1 for each strain.

To train a neural network with both direct and indirect influence connections using fluconazole resistance data (Figure 6E), we first

restricted G in the first layer to encode only the presence of the frequently-associated transporters PDR5, SNQ2, YBT1, YCF1, and

YOR1, and restricted A to encode only the efflux activity of PDR5 (i.e. A = APDR5). To model a hidden factor providing additional

indirect connections between G and APDR5, we added an additional A0 layer consisting of a single A0
PDR5 node. A0

PDR5 computes

its value using a set of indirect connections (I2) from G (from all transporters except PDR5), and then connects to APDR5. Thus,
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influence fromG to APDR5 can be computed using the direct influence links in the original model (I1;PDR5), as well as the indirect I2;PDR5
influences integrated by A0

PDR5. As with the original model, additional influence connections, as well as the bias on A0, were subject to

L1 regularization with rate l.

Growth Profiling for Individual Strains
Individual strains with 32 knockout combinations at PDR5, SNQ2, YBT1, YCF1, and YOR1 were each grown in fluconazole at con-

centrations of 1.9, 3.9, 7.8, 15.6, 23.4, 31.2, 35 and 40mM. Each genotype was grown an average of 2.7 times (range 1 – 4) in each

concentration. For each growth experiment, a culture was started at 2% DMSO at the same time to act as a solvent control. Each

culture was started at an initial cell concentration of 0.0625 OD600. OD600 was measured every 10 minutes using a Tecan plate

reader for a minimum of 20 hours.

MYTH Testing of Protein-Protein Interactions
MYTHbait/prey generation and testing were carried out as previously described (Snider et al., 2013). Briefly, PDR5, YOR1, and SNQ2

iMYTHbaits were generated by stable, in-frame, genomic integration of a Cub-LexA-VP16 tag (obtained froman L2 cassette) at the 3’

end of each gene. An integrated MYTH-tagged artificial bait was used as a negative bait control. PDR5-NubI and PDR5-NubG prey

plasmid constructs were prepared using a pPR3N MYTH-tagging vector. Previously-generated Ost1p-NubG and Ost1p-NubI prey

plasmid constructs were used as negative and positive interaction controls, respectively. Bait-prey combinations were obtained by

chemical transformation of prey plasmid into each bait strain, followed by selection on SD –Trp (SD –W) media. Colonies of trans-

formed strains were regrown on solid medium for 5 days using SD –W, SD –Trp–Ade–His (SD –WAH), SD –WAH +25mMfluconazole +

0.05% DMSO, SD –WAH +50mM fluconazole + 0.05% DMSO, and SD –WAH + 0.05% DMSO.

PCA Testing of Protein-Protein Interactions
PDR5, YOR1, and SNQ2MATa (mDHFR-F[1,2]-NatMX fusions) and MATa (mDHFR-F[3]-HphMX fusions) PCA strains were obtained

from a previous genome-wide screen (Tarassov et al., 2008). Additional strains acting as positive and negative interaction controls

were also obtained from this screen (Zip-F[1,2]/Zip-F[3] and Link-F[1,2]/Link-F[3], respectively). Strains were individually mated and

diploids were selected on solid YPD supplemented with Hygromycin B and Nourseothricin (YPD +Hyg +Nat). Diploid strains were

spotted on solid YPD +Hyg +Nat supplemented with either 2% DMSO, 2% DMSO + 200 mg/mL methotrexate, or 2% DMSO +

200 mg/mL methotrexate + 46.8mM fluconazole. Strains were grown for 72 hours at 30�C.

Quantitative RT-PCR
RNA was extracted from cultures growing exponentially in 23.43mM fluconazole using the QIAGEN RNeasy� kit. 1mg of isolate was

treated with DNAse and analyzed using an Agilent Bioanalyzer to quantify nucleic acid concentration and verify purity. cDNA synthe-

sis was performed using a combination of oligo-DT and random hexamer primers using the Thermo Scientific� Maxima� H Minus

First Strand cDNA Synthesis Kit. qPCR on these samples was then performed using a Bioline SensiFAST� SYBR No-ROX qPCR kit

and Ct values were quantified using a CFX machine. cDNA synthesis and qPCR was performed for PDR5 andUBC6 (which acted as

loading control).

QUANTIFICATION AND STATISTICAL ANALYSIS

Genetic Interaction Significance Testing
To perform themarginal association in Figure 2A, we fit the generalized linearmodel of genetic effects with no εj terms, and performed

stepwise feature elimination (eliminating the gene with the highest p-value at each step) until all included terms had a significance

level of p%0:05=16. Linear model term significance was tested using the Type III Sums of Squares ANOVA implementation given

in the car package in R. The same modeling procedure was used to perform the marginal association in Figure S2A, substituting

g for r.

To generalize the marginal association approach for training models containing ε terms of up to n-way complexity (5-way in this

study), we used a ‘stepwise expansion’ method. First, we use the marginal association procedure to initialize the model at n = 1.

Then, n is incremented by 1, and all possible n-way interactions between the genes contained in the existing (i.e. n� 1) model are

added as additional εj features. Each term in this proposed n-way model is tested for significance using Type III Sums of Squares

ANOVA, those with p > 0.05 are discarded, and the model is updated. This stepwise expansion procedure is repeated until either

n reaches 5, or the number of genes in the n� 1 model is less than n (i.e. there are no more interaction terms to search for).

After the stepwise expansion procedure is finished, the remaining terms are more rigorously tested for statistical significance by

performing stepwise feature elimination (as in the marginal association procedure) until all included terms have a significance level

of p%0:05=k, where k is the number of all possible 1-5 gene combinations amongst the marginally-associated genes.
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Further Neural Network Weight Regularization
All neural networks were trained 10 times, varying the initial parameter values and the stochastically sampled gradients in each run.

The weights to the final model were set to the mean weights learned from these 10 training iterations. In addition, standard deviation

between these 10 iterations was calculated for each parameter, and was used to compute an absolute parameter Z score:��Zparam

�� = ��mparam

��
sparam

Given the non-deterministic nature of the algorithm, we wanted to ensure that non-zero parameters are not a result of stochastic

variability, and therefore non-zero weights with
��Zparam

�� < 4 were set to 0.

We further examined each non-zero weight to assess its predictive value. First, we computed the vector of squared residuals in the

initial model over i strains and j drugs, given the set of k initial non-zero weights Wf1�kg:

ðεinitialÞ2 =
 
rnormGf1.ig ;df1.jg

� brnormGf1.ig ;df1.jg

�����Wf1.kg

!2

Then, for each l˛f1:::kg, we set Wl to 0, and computed the squared residuals in the proposed reduced model:

ðεreducedÞ2 =
 
rnormGf1.ig ;df1.jg

� brnormGf1.ig ;df1.jg

�����Wf1.ðl�1Þ; ðl + 1Þ.k g

!2

Considering only data where settingWl to 0 made a predictive difference (εinitialsεreduced at a numerical tolerance of 10�4), we then

computed the paired Mann-Whitney U statistic between ðεinitialÞ2 and ðεreducedÞ2 to derive a p-value for the degree of squared-error

reduced by l, and keep all features with p<0:05=k in the final model.

We searched for an appropriate regularization rate (l) by performing the above training, merging, and pruning procedure using a

range of rates from 10�6 to 10�1. We first searched 13 intervals between 10�6 to 100(Figure S5A). We observed high mean-squared

error (MSE) and a lack of reproducible parameters at regularization rates below � 10�4:5and a smaller increase in MSE around

� 10�3, we searched another 11 intervals between 10�4 to 10�3(Figure S5A). We chose a regularization rate of 5310�4 for the model

in Figure 5B, as any rate higher than this resulted in a jump in MSE in both the MATa andMATa pools, while lowering this rate did not

have a clear impact on MSE, but increased the number of non-zero parameters (Figure S5A).

To regularize weights for the neural network in Figure 6E, we initially employed the testing procedure described above, but

observed occasional convergence on a set of parameters with a high mean-squared error, even at high regularization rates. We

therefore modified themodel merging procedure to use themedian weights between 10 runs rather than themean, and discontinued

use of the
��Zparam

�� filter. Furthermore, we searched for a different l for this network because training with l= 5310�4 resulted in a

similar model as the two-layer network (data not shown). Therefore, we performed a separate ‘three-layer l’ search for this network,

searching 13 intervals between 10�6 to 100 (Figure S6D). For three-layer training, we found that l> 10�5negatively impacts MSE (Fig-

ure S6D), and therefore used a less-restrictive l= 10�5 to train the three-layer network in Figure 5B. The predictive value of the learned

weights was subject to the same statistical significance test as for the two-layer network.

Analysis of Liquid Growth Data
To calculate resistance, we divided the ODmeasured in the drug by the ODmeasured in the solvent at the time which the culture first

saturated in the solvent. To automatically determine a saturation timepoint, we took the second derivative of the growth curve (using a

window size of 4 tecan measurements to calculate the first derivative) and determined the time which it is maximized. Automatically

determined saturation times were checked visually. Multiple replicates were averaged to yield the values in Figure S6A. To determine

the fitted IC50 values in Figure 6B, averaged resistance values were linearly interpolated between measured concentrations.

Quantitative RT-PCR Analysis
Relative expression of PDR5 in all strains was calculated as 2CqUBC6�CqPDR5. For each strain, Cq values for the cDNA samples were

quantifiedmultiple times to assess technical variability (CqPDR5wasmeasured in triplicate, andCqUBC6wasmeasured in triplicate),

and thesemultiplemeasurements were averaged before calculating relative expression. qRT-PCRwas performed for three individual

cultures of each strain in each genetic background. RY0566 was used as the wildtype.

DATA AND CODE AVAILABILITY

R scripts used to perform computational analyses are available at https://github.com/a3cel2/xga. High-throughput sequencing

reads generated for en masse genotyping and BarSeq are available at the NCBI Sequence Reads Archive, with accession SRA:

PRJNA535622.
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