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Perturbing proteomes at single residue resolution
using base editing
Philippe C. Després 1,2,3,4, Alexandre K. Dubé 1,2,3,4,5, Motoaki Seki6, Nozomu Yachie 6,7,8✉ &

Christian R. Landry 1,2,3,4,5✉

Base editors derived from CRISPR-Cas9 systems and DNA editing enzymes offer an

unprecedented opportunity for the precise modification of genes, but have yet to be used at a

genome-scale throughput. Here, we test the ability of the Target-AID base editor to sys-

tematically modify genes genome-wide by targeting yeast essential genes. We mutate

around 17,000 individual sites in parallel across more than 1500 genes. We identify over

700 sites at which mutations have a significant impact on fitness. Using previously deter-

mined and preferred Target-AID mutational outcomes, we find that gRNAs with significant

effects on fitness are enriched in variants predicted to be deleterious based on residue

conservation and predicted protein destabilization. We identify key features influencing

effective gRNAs in the context of base editing. Our results show that base editing is a

powerful tool to identify key amino acid residues at the scale of proteomes.
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Recent technical advances have allowed the investigation of
the genotype–phenotype map at high resolution by
experimentally measuring the effect of all possible nucleo-

tide substitutions in a short DNA sequence. While saturated
mutagenesis informs us on the effect of many mutations, it usually
covers a single locus or a fraction of it1,2. Because such data is only
available at sufficient coverage for a very small number of proteins,
general rules on substitution effects must be extrapolated to other,
often unrelated proteins. At a lower level of resolution, genome-
scale mutational data has mostly been acquired through large-
scale loss-of-function strain collections, where the same genetic
change (e.g., complete gene deletion) is applied to all genes3–5.
This approach is a powerful way to isolate each gene’s contribu-
tion to a phenotype, including fitness, but limits our under-
standing of the role of specific positions within a locus.

CRISPR-Cas9-based approaches usually cause protein loss of
function through indel formation6 or by modifying gene expres-
sion levels7–9 at many loci in parallel. Again, these approaches
generally limit the information gain to one perturbation per locus.
There is, therefore, a strong tradeoff between the resolution of the
existing assays and the number of loci or genes investigated.
Recent developments in the field now allow for the exploration of
the effects of many mutations per gene across the genome. For
instance, in yeast, methods for high-throughput strain library
construction have allowed the measurement of thousands of
variant fitness effects in parallel across the genome10–14. These
approaches rely on CRISPR-Cas9-based genome modifications
requiring the formation of double-strand breaks followed by
repair using donor DNA, which often depends on complex strain
and plasmid constructions. An alternative approach would be to
use base editors, which allow the introduction of mutations of
interest in the genome by direct modification of DNA bases rather
than DNA segment replacement.

Base editors use DNA modifying enzymes fused to modified
Cas9 or Cas12 proteins to create specific point mutations in a
target genome15–17. Such base editors have recently been used to
perform site-specific forward mutagenesis in human cell lines.
The two main approaches, Targeted AID-mediated mutagenesis
(TAM)18 and CRISPR-X19, target specific regions of the genome
where they induce mutations semi-randomly. This generates a
library of mutant genotypes that can be competed to find bene-
ficial and deleterious variants under selective pressure. As the
relative fitness measurements depend on targeted sequencing of
the locus of interest, these approaches are difficult to adapt to
high-throughput multiplexed screens where tens of thousands of
sites can be targeted within the same gRNA libraries.

Here, we present a method that bridges the flexibility of Target-
AID mutagenesis and the multiplexing capacities of genome editing
depletion screens. By using a base editor with a narrow and well-
defined activity window15, we select gRNAs generating a limited
number of predictable edits in yeast essential genes. This allows us
to use gRNAs as a readout for the effect of the mutations, similar to
commonly used barcode-sequencing approaches to measure fitness
effects. Using yeast essential genes as a test case, we identify 708
gRNAs targeting sensitive residues. We then orthogonally validate
fitness effects of mutagenesis outcomes using classical genetics
approaches and show that they overlap with those predicted to be
deleterious. We then use this data to investigate which factors
influence base editing efficiency and find multiple gRNAs and
target properties that affect mutagenesis and that can be optimized
for future experiments in specific genomic spaces.

Results
Design of a base editing library targeting essential genes. We
used Target-AID mutagenesis to simultaneously assess mutational

effects at over 17,000 putative sites in the yeast genome. We
scanned yeast essential genes for sites amenable to editing by the
Target-AID base editor as well as targets with other specific
properties, including intronic sequences. Because all essential
genes have the same qualitative fitness effects when deleted20,
focusing on these genes allowed us to limit the variation in fitness
that could be due to the relative importance of individual genes for
growth, and focus on the importance of specific positions within a
locus. We excluded gRNAs that did not target between the 0.5th
and 75th percentile of the length of annotated genes to limit
position biases that could influence the efficiency of stop-codon
generating guides21,22.

To associate each gRNA in the library to specific base editing
outcomes, we developed a simple model based on the yeast data
included in the original Target-AID study as well as our own
work15,23. First, we expected that editing would mostly result in
genotypes where only one nucleotide is edited in the activity
window of the editor. Second, we predicted that the editing
outcomes would mainly consist of C to G and C to T mutations
and thus that the abundance of C to A products will be negligible.
Finally, we expected that editing frequency ranks would follow
the editing activity rankings already known from the initial
characterization of Target-AID. Based on these criteria, we
filtered out potential target sites where all three high editing rate
positions (−19, −18, and −17) or those where both positions
−18 and −17 are cytosines and kept the remaining sites for
inclusion in the gRNA library. The resulting library contained
40,000 gRNAs, of which ~35,000 targeted essential gene coding
sequences and ~5000 other target types as shown in Supplemen-
tary Fig. 1.

Over 75% of target sequences in this set contained only one or
two Cs in the extended activity window (positions −20 to −14),
as well as a general enrichment for cytosines in the high activity
window (Supplementary Fig. 2A, B). Because the goal of our
experiment was to link specific mutations to fitness effects, co-
editing of multiple nucleotides using an editor that does not
channel mutations to a specific outcome has the potential to
obscure the genotype responsible for a fitness effect. To take this
into account, we placed each gRNA in a co-editing risk category
based on the presence and positions of cytosines in the activity
window (see the “Methods” section). Based on this metric, we
found that over 80% of gRNAs fell either in the very low or the
low-risk category (Supplementary Fig. 2C). If co-editing occurs,
but the other mutated cytosine is part of the same codon as the
intended target site, then any resulting fitness effects can still
be linked to the perturbation of a specific amino acid. We found
the proportion of gRNAs in the library for which this is true to be
over 50%: when co-editing risk category is taken into account, the
proportion reaches ~90% (Supplementary Fig. 2D). As Target-
AID is known to perform processive editing, a high co-editing
risk might also be linked to higher overall editing rate15.

Measurement of mutagenesis rate and outcomes of library
gRNAs. While the repair product outcomes of edits for gRNAs
can be predicted with varying levels of accuracy for CRISPR-
Cas9-based editing24, no such tools are available yet for base
editing applications. As such, the model we used to associate
gRNAs in our library to mutational outcomes is only a parsi-
monious deduction based on the original Target-AID data and
our previous work15,23. Furthermore, predicting the activity of
gRNAs for base editing remains difficult25. The measurement of
fitness effects is not associated with a direct, simultaneous mea-
surement of mutagenesis rate in our experiment. As such, the
absence of fitness effects for a gRNA can both be explained by
either non-functional or low editing, or successful editing that
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resulted in mutations with no detectable fitness effects23. As our
experiment focuses on the impact of targeted mutations on cell
growth, the first group can be seen as false negatives, and the
second as true negatives. While we can modulate the gRNA
abundance variation threshold to minimize the risk of false
positives, additional experimental data on mutagenesis success
rates and editing outcomes was required to assess which type of
negative results would be dominant in our experiment.

To evaluate the performance of our model and the function-
ality of the library gRNAs, we performed a base editing time
course experiment where mutagenesis rates and outcomes were
measured by deep sequencing of the edited genomic loci
(Supplementary Fig. 3). To gain insights on the mutagenesis
outcomes of different editing scenarios, we selected guides with
different predicted patterns of cytosine presence in the Target-
AID activity window (Fig. 1a).

We included 9 guides from the library isolated from the library
quality control process (see the “Methods” section), as well as
three control gRNAs respectively targeting the pseudogene
YCL074W, the non-essential gene VPS17, and ADE1, which can
be used as a phenotypic marker. Most gRNAs could efficiently
edit their respective targets, with 9 out of 12 gRNAs reaching
mutation rates of 50% or higher (Fig. 1b), consistent with
previous results15,23. Replicates were highly correlated along
different measurements with editing rates at the CAN1 co-editing
site being highly consistent (Supplementary Fig. 4A–E). Only the
gRNA targeting SES1 was found to be inactive, and as such was
excluded from downstream analysis. The very low editing rate
observed for the gRNA targeting SES1 is an example of unknown
factors affecting mutagenesis efficiency that leads to false
negatives in large-scale experiments.

In our editing model, we first predict that single mutants would
be the main mutagenesis outcome of the base editing process. We
found this to be true for 9 gRNAs out of 10 with more than one
cytosine in the Target-AID activity window (Fig. 1c). Second, our
model considers C to A editing to be rare and thus disregards
them in favor of the more common C to G and C to T mutations.
We observe this bias in the deep sequencing data (Fig. 1d), with
the median occupancy of both C to G and C to T genotypes in
edited alleles being much greater than C to A occupancy (C to T
vs C to A: W= 0, p= 1.73 × 10−6, C to G vs C to A: W= 41, p=
8.19 × 10−5, two-sided Wilcoxon signed-rank test). Including
both mutagenesis outcomes as in our model leads to a median
coverage of 93%. Our sequencing data also showed a greater
prevalence of C to T mutations compared to C to G (W= 112,
p= 0.01, two-sided Wilcoxon signed-rank test), but if absolute
editing rate is taken into account this difference disappears
(Supplementary Fig. 4F). Finally, in cases where multiple editable
nucleotides are present in the activity window of the base editor,
our model uses the quantitative data of the original Target-AID
manuscript to predict qualitatively which position should be
edited at the highest frequency. We found that this prediction
method of editing rank in the activity window matched with the
experimental data in most cases (Fig. 1e) which is unlikely to
occur by chance (p ≈ 0.0004 based on 1 × 106 random rank
permutations). Globally, we found that the edited allele pool was
mostly composed of the genotypes predicted by our model: for
the 8 gRNAs with editing activity that came from the library, the
median fraction of edited reads covered by our model was 69%
(Fig. 1f). In 7 out of 8 cases, the fractions of edited reads covered
by the model was better than the 99th percentile of randomized
outcome combinations and in 6 out of 8 cases also superior to the
99.9th percentile. Overall, these results support that a large
fraction of the gRNAs included in our library can edit their
genomic targets in an efficient and predictable manner.

High-throughput screening using the gRNA library. The gRNA
library was cloned into a high-throughput co-selection base
editing vector23. We performed pooled mutagenesis followed by
bulk competition (Supplementary Fig. 7) to identify mutations
with significant fitness effects (Fig. 2). As the relative abundance
of each gRNA in the extracted plasmid pool depends on the
abundance of the subpopulation of cells bearing these gRNAs,
any fitness effect caused by the mutation they induce will influ-
ence their relative abundance. Variation in plasmid abundance
was measured using targeted next-generation sequencing of the
variable gRNA locus on the base editing vector in a manner
similar to GeCKO approaches6,26.

After applying a stringent filtering threshold based on gRNA read
count at the mutagenesis step (see the “Methods” section), we
identified a total of ~17,000 gRNAs for which we could evaluate
fitness effects. Replicate data for gRNAs passing the minimal read
count selection criteria showed high correlation across experimental
time points (Supplementary Fig. 8) and cluster by experimental step
(Supplementary Fig. 9), showing that the approach is reproducible.
Using the distribution of abundance variation of gRNAs with
synthesis errors (see the “Methods” section) as a null distribution,
we identified 708 gRNAs across 605 loci with significant negative
effects (GNE) on cell survival or proliferation at a 10% False
Discovery Rate (Fig 3A, Supplementary Fig. 7B and C). GNEs are
distributed evenly across the yeast genome (Fig 3b), suggesting no
inherent bias against specific regions. An example of gRNA
abundance variation through time for all gRNAs (both GNEs and
non-significant gRNAs (NSGs)) targeting GLN4 is shown in Fig 3c.

Because our screen specifically targeted essential genes, many
gRNAs caused mutations in highly conserved regions with high
functional importance. To illustrate this, we focus on the highest
scoring GNE targeting GLN4, a tRNA synthetase. The gRNA
33725 mutates a glycine at position 267 into either arginine or
serine, and showed a dramatic drop in abundance in the large-
scale experiment. To validate the deleteriousness of the predicted
mutations, we transformed a centromeric plasmid bearing a wild-
type or mutated copy of the gene under the control of its native
promoter27 in a heterozygous deletion background28 (Supple-
mentary Fig. 10A). Glycine 267 is part of the “HIGH” motif,
characteristic of class I tRNA synthetases, which is involved in
ATP binding and catalysis and is highly conserved through
evolution29. As expected, the region around the “HIGH” motif
shows both a low evolutionary rate based on inter-species
comparisons and a much lower variant density in yeast
populations compared to other domains of Gln4 (Supplementary
Fig. 10B), showing conservation both on a short and long
timescales. Surprisingly, mutagenesis experiments in the bacterial
homolog MetRS concluded that mutating this residue from
glycine to alanine did not alter significantly catalysis while
mutating it to proline had a strong disruptive effect30. We found
that mutating Gly 267 either to Arg or Ser was enough to cause
protein loss of function (Fig 3d).

The three other sensitive sites identified in GLN4 by our screen
were also clustered in regions with slow evolutionary rates. We
found that a NSG near the z-score threshold targeting residue
D291 induced a highly deleterious mutation coupled with a
neutral mutation as outcomes (D291E vs D291D, Supplementary
Fig. 11). However, we did not observe any discernible growth
defect for the other tested GNE outcomes as well as for the
outcomes of 6 other NSGs targeting nearby amino acids.
The other GNEs tested had markedly more positive scores than
the one targeting G267, which would be consequent with a higher
false positive rate close to the significance threshold. The case of
the NSG-induced D291E/D291D pair, where a strong fitness
effect is partially obscured by a neutral mutation produced by the
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other mutagenesis outcomes supports that sites of interest can be
detected even close to the significance threshold. As we only
tested two outcomes per gRNA, it is also possible that some of the
abundance drops we measured were the result of mutations
outside of our model, which are sometimes predicted to be more
deleterious than the most likely mutations.

Comparison of GNE induced mutations with variant effect
predictions. If GNEs indeed induce specific deleterious muta-
tions, these mutations should be predicted to be more deleterious
than those of NSGs. We tested this using two recently published
resources for variant effect prediction: Envision2 and Mutfunc31.
Envision is based on a machine learning approach that leverages

a

c

d e f

b

Fig. 1 A parsimonious model predicts the most probable outcomes of Target-AID mutagenesis. a gRNAs included in the time course base editing
experiment had diverse C content profiles in the Target-AID activity window. Nucleotides are color coded: guanines are purple, thymines are red, adenines
are green and cytosines are blue. b Overall fraction of edited reads for all target sites along time points in the experiment: T0 (start of induction), T6 (mid
induction), T12 (end of induction). The solid time point represents surviving cells plated after galactose induction, while the liquid time point represents the
cell population after canavanine co-selection. Amplification of the ERO1 target site from the liquid recovery time points was unsuccessful (shown in gray),
and as such the solid recovery time point was used instead for the other analysis steps. c Fraction of genotypes with either one, two or three edits
compared to the total fraction of reads that were edited. d Editing outcome type for all sites with a total editing rate greater than one percent after co-
selection (n= 30 cytosines across all targeted sites). The C to G/T distribution represents the sum of editing that resulted in a C to G or C to T mutation.
Position-wise editing rates and outcomes are shown in Supplementary Figs. 5 and 6. e Agreement between the predicted nucleotide total editing rank in the
model used to predict mutagenesis outcomes in the large-scale experiment and the deep sequencing data (n= 28 sites, 10 gRNAs: gRNA specific
predicted and observed rankings are presented in Supplementary Figs. 5 and 6). The gRNAs targeting ADE1 and SES1 were respectively excluded from the
analysis because there is only one editable site in the activity window and total editing rate was too low. f Edited read coverage of the mutation outcome
prediction model and the 99th percentile of edited allele combinations (n= 4 genotypes in both cases) for the gRNAs with editing activity included in the
large-scale experiment. Boxplots represent the upper and lower quartiles of the data, with the median shown as a yellow bar. Whiskers extend to 1.5 times
the interquartile range (Q3–Q1) at most. Source data are available in the Source Data file.
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large-scale saturated mutagenesis data of multiple proteins to
perform quantitative predictions of missense mutation effects on
protein function. The lower the Envision score, the higher the
predicted effect on protein function. Mutfunc aggregates multiple
types of information such as residue conservation through the use
of SIFT32 as well as structural constraints to provide a binary
prediction of variant effect based on multiple quantitative and

qualitative values. Mutations with a low SIFT score have a lower
chance of being tolerated, while those with a positive ΔΔG are
predicted to destabilize protein structure or interactions. Both
Envision and the Mutfunc aggregated SIFT data cover the
majority of the most probable mutations generated by the gRNA
library (Supplementary Fig. 12A). The structural modeling
information had much lower coverage, covering at best around

Fig. 2 A gRNA library for systematic perturbation of essential genes using the Target-AID base editor. Essential genes (ex.: E.G.1) were scanned for
sites appropriate for Target-AID mutagenesis. Mutational outcomes include silent (gray triangle), missense (black triangle) mutations, as well as stop
codons (*). DNA fragments corresponding to the gRNA sequences were synthesized as an oligonucleotide pool and cloned into a co-selection base editing
vector. Using gRNAs as molecular barcodes, the abundance of cell subpopulations bearing mutations is then measured after mutagenesis and bulk
competition. Mutations with fitness effects are inferred from reductions in the relative gRNA abundances.

a

c

b

d

Fig. 3 High-throughput forward mutagenesis by Target-AID base editing identifies sensitive sites across the yeast genome. a Cumulative distribution
of z-scores of the log2 fold-change in gRNA abundance between mutagenesis and the end of the bulk competition experiment. Scores were calculated
using the distribution of abundance variation of gRNAs with synthesis errors (SE). The fitted normal distribution is shown as a black line, and the 10% FDR
threshold as a dotted black line. The distribution of target types in the 708 gRNAs with Negative Effects (GNE) is shown in the inset. b Positions of base
editing target sites in the yeast genome. Telomeric regions are depleted in target sites because very few essential genes are located there. GNEs are shown
in red, and other gRNAs are in black. The orientation of the line matches the targeted strand relative to the annotated coding sequence. c Average decline
in gRNA abundance (on a log scale) between time points (n= 2 replicates) after mutagenesis for gRNAs targeting GLN4 (n= 30 gRNAs), a tRNA
synthetase. Median gRNA abundance across the entire library over time is shown in green. The red lines represent the gRNAs categorized as having a
significant effect (GNE) for this gene, while non-significant gRNAs (NSG) are shown in black. The gRNA with the most extreme z-score targets residue
G267. d Mutagenesis of Gln4-G267 validates its essential role for protein function. Tetrad dissection of a heterozygous deletion mutant bearing an empty
vector results in only two viable spores, while the wild-type copy in the same vector restores growth. Dissection of the two heterozygous mutants bearing a
plasmid with the most probable single mutant based on the known activity window of Target-AID shows both mutations are lethal. Source data are
available in the Source Data file.
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12% of the most probable mutations (Supplementary Fig. 12B).
As expected, mutations generated by GNEs showed significantly
lower SIFT scores and showed enrichment for strong effects
predicted by SIFT and Envision (Fig. 4). Indeed, all four most
probable substitutions created by GNEs are about twice more
likely to be predicted to have a large deleterious effect by Envision
or a very low chance of being tolerated as predicted by SIFT
compared to NSGs. Envision scores across the proteome show a
high level of homogeneity, with most mutations having a score
between 0.94 and 0.96 (Supplementary Fig. 12C). According to
the original Envision study2, this should be predictive of a small
decrease in protein function. As such, the shifts in score dis-
tributions between GNEs and NSGs are more subtle but still
support that GNE induced mutations are generally more likely to
be deleterious as well (Supplementary Fig. 13A).

Mutations with destabilizing effects as predicted by structural
data also appeared to be enriched in GNEs predicted mutations
but low residue coverage limits the strength of this association.
This is supported by the raw ΔΔG value distributions, which
show a significant tendency for GNE mutations to be more
destabilizing (Welch’s t-test p-values for GNE vs NSG ΔΔG: C-to-
G #1 0.0001, C-to-T #1 0.0064, C-to-G #2 0.148, C-to-T #2 0.007,
Supplementary Fig. S13B–D). However, the shift in distribution
only achieved significance for certain mutation predictions based
on solved structures and homology models. While low residue
coverage limits our statistical power, this weak apparent
enrichment for mutations affecting protein stability may reflect
the marginal stability of the target proteins33, resulting in
individual destabilizing mutations having a limited effect on
fitness. As expected from known experimental data on mutagen-
esis outcomes15, signal was usually stronger for the most probable
C to G mutation.

Sensitive sites provide biological insights. Since Target-AID can
only generate a limited range of amino acid substitutions from a
specific coding sequence, we investigated whether any of these
mutational patterns were enriched in GNEs (Fig. 5a). We found
deviations from random expectations in both C-to-G and C-to-T
mutation ratios that drove the enrichment of several mutation
combinations. Three out of four of the mutation pair patterns
involving glycine were enriched in GNEs. For example, the

Glycine to Arginine or Serine substitutions (as exemplified by
guide 33725 targeting GLN4) is the second most enriched pattern,
being almost four-fold overrepresented in GNE outcomes. This
pattern is consistent with the fact that Arginine has properties
highly dissimilar to those of Glycine34, making these substitutions
highly deleterious. Furthermore, as Glycine residues are often
important components of cofactor binding motifs (e.g.,: Phos-
phates)35 this observation might reflect a tendency for GNEs to
alter these sites.

As expected, there is a strong enrichment within GNEs for
patterns that result in stop codons: both C-to-G patterns (S to
stop: 3.1 fold enrichment, p= 3.32 × 10−8, Y to stop: 2.5 fold
enrichment, p= 0.0001) but only one C-to-T pattern was
overrepresented significantly (W to stop, 5.6 fold enrichment,
p= 2.48 × 10−14). Substitutions to stop codon in one outcome
also drove enrichment in the other: for example, the link between
Serine to Stop (C-to-G) appears to be the cause of the Serine to
Leucine (C-to-T) overrepresentation. Both mutation pairs invol-
ving mutating a Tryptophan to a stop via a C-to-T mutation are
enriched: this is not surprising, as the alternative mutations
Tryptophan to Serine or Cysteine are also highly disruptive34.
Changes between similar amino acids, which are expected to be
tolerable, were also generally depleted in GNE (ex.: the Alanine to
Glycine/Valine pair, 3 fold depletion, p= 0.0002). Mutations in
intronic sequences and putative non-functional peptides were
also underrepresented, as were most patterns leading to silent
mutations (Fig. 5a). These results show the power of this
approach to discriminate important functional sites from more
mutation-tolerant ones across the genome.

Interestingly, genes for which more than one GNE were
detected were enriched for molecular function terms linked to
cofactor binding (Supplementary Table 1). This suggests that the
GNEs might indeed have a tendency to affect protein function
through mechanisms other than protein or interaction interface
destabilization. These protein properties depend on many
residues, making them more robust to single amino acid
substitutions, whereas cofactor binding may depend specifically
on a handful of residues, making these sites critical for function.
Using the Uniprot database36, we also examined whether gRNAs
that target annotated binding sites or highly conserved motifs are
more likely to affect fitness compared to other gRNAs targeting

a b

Fig. 4 GNE induced mutations are enriched in predicted deleterious effects. a SIFT score distributions for the most likely induced mutations of both GNEs
(blue) and NSGs (red). The thresholds for the categories used in the enrichment calculations in b are shown as black dotted lines. SIFT scores represent
the probability of a specific mutation being tolerated based on evolutionary information: the first threshold of 0.05 was set by the authors in the original
manuscript32 but might be permissive considering the number of mutations tested in our experiment (n= 571, 12,718, 457, 8767, 430, 7609, 343, 5847).
All GNE vs NSG score comparisons are significant (Welch’s t-test p-values: 1.64 × 10−21, 5.99 × 10−20, 1.62 × 10−12, 1.75 × 10−9). Boxplots represent the
upper and lower quartiles of the data, with the median shown as a black bar. Whiskers extend to 1.5 times the interquartile range (Q3–Q1) at most. Outliers
are shown in gray. The box cutoff is due to the large fraction of mutations for which the SIFT score is 0. b Enrichment folds of GNEs over NSGs for different
variant effect prediction measurements. Envision score (Env.), SIFT score (SIFT), protein folding stability based on solved protein structures (Struct. ΔΔG),
protein folding based on homology models (Model ΔΔG) and protein–protein interaction interface stability based on structure data (Inter. ΔΔG). The
predictions based on conservation and experimental data are grouped under ‘Predictors’ and those based on the computational analysis of protein
structures and complexes under ‘Structural’. Source data are available in the Source Data file.
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the same set of genes. We found a 4 fold enrichment for GNEs
directly affecting these sites (37/188, ratioGNE On= 0.196, 389/
5963 ratioGNE Off= 0.048, two-sided Fisher’s exact test p= 1.45 ×
10−12) or a 2.4 fold enrichment when affecting residues in a two
amino acid window around them (17/144, ratioGNE near= 0.118,
389/5963, ratioGNE Off= 0.048, two-sided Fisher’s exact test p=
0.00080).

The precise targeting of our method also allowed us to
investigate amino acid residues with known functional annota-
tions such as post-translational modifications. We found no
significant enrichment for gRNAs mutating directly annotated
Post-Translational Modifications (PTMs) (ratioGNE PTM= 12/
708, ratioNSG PTM 251/16046, Fisher’s exact test p= 0.76). Most
of these sites were phosphorylation sites (4), metal coordinating
residues (3) and ubiquitination sites (2). This is consistent with
the hypothesis that many PTM sites may have little functional
importance37 and thus mutations affecting them should not be
significantly enriched for strong fitness effects compared to other
possible mutations. The same was also observed for gRNAs
mutating residues near known PTMs that could disturb
recognition sites (ratioGNE nearPTM= 88/708, ratioNSG nearPTM

= 1763/16046, Fisher’s exact test p= 0.43). As we did not
specifically target PTMs, our sample size is small and it should be
noted that statistical power regarding these observations is
limited.

However, GNEs that do target annotated PTM sites might
provide additional evidence supporting the importance of these
sites in particular. For example, the best scoring GNE in the well-
studied transcriptional regulator RAP1 is predicted to mutate
residue T486. This threonine has been reported as phosphory-
lated in two previous studies38,39, but the functional importance
of this phosphorylation has not been explored yet. Residue T486
is located in a disordered region in the DNA binding domain40,

which is part of the only RAP1 fragment essential for cell
growth41,42. Because the available wild-type RAP1 plasmid (see
the “Methods” section) does not complement gene deletion
growth phenotype, we used a different strategy for validation that
relied on CRISPR-mediated knock-in (see the “Methods” section
and Supplementary Fig. 14). We tested the effect of several
predicted GNE induced mutations in RAP1 targeting positions
T486, A510, R523 and A540 (Fig. 5B-C). We found that the
predicted mutations at two of these positions, R523 and A540,
were highly deleterious. While we could not validate that the two
most likely mutations predicted to be caused by the GNE
targeting T486 had a detectable fitness effect in these conditions,
we found that phosphomimetic mutations at this position were
lethal but most other amino acids were well tolerated. While we
could validate that this gRNA indeed targeted a sensitive site, the
outcomes predicted by our model did not have any detectable
fitness effects. This showcases a limitation of our approach: the
uncertainty in outcome prediction can complicate validation
studies. As we only tested progeny survival on rich media and at a
permissive temperature and the screen was performed in
synthetic media at 30 °C, these mutants might still affect cell
phenotype but in an environment-dependent manner.

gRNA properties influence mutagenesis efficiency. There are
still very few high-throughput experimental datasets available that
allow the investigation of which gRNA properties affect editing
efficiency in the context of base editing. We therefore sought to
examine what gRNA and target sequence features could influence
mutagenesis efficiency. To do so, we focused on the subset of
gRNAs with the potential to generate stop codons (stop codon
generating gRNAs, SGGs) in essential genes (Fig. 6a). As gRNAs
in our library were designed to target the first 75% of the coding

a

b c

Fig. 5 GNE mutations are enriched for specific amino acid substitution patterns and identify critical sites for protein function. a Fold depletion and
enrichment volcano plots for the most probable mutations induced by GNEs in the screen. Enrichment and depletion values were calculated by comparing
the relative abundance of each mutation among GNEs and NSGs using two-sided Fisher’s exact tests. Mutation patterns significantly depleted are shown in
blue, while those that are enriched are in red. The significance threshold was set using the Holm–Bonferroni method at 5% FDR to correct for multiple
testing and is shown as a dotted gray line. b Protein variant frequency among 1000 yeast isolates (black dots) and residue evolutionary rate across species
(blue line) for RAP1. The target site for the GNEs targeting T486 is highlighted by a red line while the other detected GNEs target sites are shown by a gray
line. c Tetrad dissections confirm most RAP1 GNE induced mutations indeed have strong fitness effects, as well as other substitutions targeting these sites.
Source data are available in the Source Data file.
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sequences, successful stop codon generation in this subset of
genes should often lead to a lethal loss of function13,22.

We found important variation in the ratio of GNE for the
different types of SGGs (Fig. 6b), with gRNAs targeting TGG
(Trp) codons having the highest activity. This is in opposition to
the general trend, as in general C to G mutation leading to stop
codon formation had higher GNE ratios than the three other C-
to-T alternatives. Overall, we observed a significant GNE
enrichment in SGGs which depend on the first C to G mutation
to induce stop codon formation (Fig. 6c). Multiple factors can
explain the higher performance of TGG targeting gRNAs. First, as
most of these sites have high co-editing risk scores because of the
two consecutive cytosines, they might have increased editing rates
due to processive co-editing events, increasing the chance of
fitness effect detection. This phenomenon might also occur in
non-SGG gRNAs (Supplementary Fig. 15A). Second, we found a
significant enrichment in GNEs for gRNAs targeting the non-
coding strand, even after excluding SGGs (Fig. 6d). This effect
might be explained by the differences in repair efficiency between
strands in yeast43. Furthermore, as the non-coding strand is the
one which is transcribed, a deamination event there might lead to
consequences at the protein level more rapidly when the mutated
coding sequence is transcribed. In contrast, the targeted
chromosomal strand appears to be much less important
(Supplementary Fig. 15B). The variation in GNE ratio observed
between the different SGG target codons might also reflect in vivo
DNA repair preferences that depend on sequence context, where

different outcomes might be favored depending on the target
sequence. For example, the CA di-nucleotide might favor C to G
mutations, which would explain the low GNE ratio of CAA (Gln)
targeting SGGs and the higher than average GNE ratio of TCA
(Ser) targeting SGGs.

Another parameter with a high impact on GNE enrichment in
gRNA sets is the predicted melting temperature of the RNA-DNA
duplex formed by the gRNA sequence and its target DNA
sequence (Supplementary Fig. 15C, D). Both SGG and non-SGG
gRNAs with low values have a lower chance of being detected as
having effects, while gRNAs with higher values are enriched for
GNEs (Fig. 6e). This enrichment cannot be attributed to technical
biases in library preparation or high-throughput sequencing that
would tend to lower their abundance as melting temperature
shows practically no correlation with read count at any time point
(Supplementary Fig. 16). Furthermore, this effect is not caused by
target position bias within target genes or a strong correlation
between GC content and the targeted position (Supplementary
Fig. 17). The distribution of GC content in GNEs is shifted
compared to NSGs, with a relative increase of 12% (Fig. 6f).
Because co-editing tends to increase the mutagenesis efficiency of
gRNAs with multiple editable C, this could explain the increased
GC content and thus higher melting temperatures we observed for
GNEs. However, we found that the relative increase in G content
(+14%) in GNEs is higher compared to the relative increase in C
content (+10%). This supports that gRNA/DNA binding energy
can be an independent factor affecting base editing efficiency.

a b c

d e f

–

z

Fig. 6 gRNA and target properties affect mutagenesis efficiency. a Since Target-AID can generate both C to G and C to T mutations, many codons can be
targeted to create premature stop codons. The TGG (W) codon is the only one targeted on the non-coding strand as ACC. b GNE ratio for SGGs targeting
different codons in essential genes, split by co-editing risk categories, where 1 and 2 represent low or very low co-editing risk while 3 or 4 represent moderate
to high co-editing risk. c Cumulative z-score density of SGGs grouped by the mutational outcome generating the stop codon. A higher rate of GNE is observed
for gRNAs for which a C-to-G mutation at the highest editing activity position generates a stop codon mutation. The significance threshold is shown as a black
dotted line. d Cumulative z-score density of gRNAs that do not generate stop codons targeting either the coding or non-coding strand. e SGG and non-SGG
GNE enrichment compared to the expected GNE ratio for different melting temperature ranges. f GC, C, and G content of NSGs and GNEs. Distribution
medians are shown as black dotted lines and means are shown as red lines. P-values were calculated using Welch’s t-tests. Boxplots represent the upper and
lower quartiles of the data, and whiskers extend to 1.5 times the interquartile range (Q3–Q1) at most. Outliers are shown in gray.
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Discussion
In previously published methods such as TAM and CRISPR-
X18,19, the semi-random nature of the editing forces the use of
mutant allele frequencies as a readout for mutational fitness
effects, potentially limiting the scale of the experiments because
only one genomic region can be targeted at a time. To comple-
ment these approaches, we use more predictable base editing to
increase dramatically the number of target loci, albeit at the cost
of a lower mutational density. Our results demonstrate the fea-
sibility of base editing screening at a large scale with applications
beyond stop codon generation, and future developments will
further enhance it. For instance, the use of a base editor with
multiple possible mutagenesis outcomes complexifies the pre-
diction of editing outcomes, which can, in turn, make GNE
follow-up challenging. Using a base editor that channels muta-
tional outcomes such as cytidine deaminase-uracil glycosylase
inhibitor (UGI) fusion can address this problem15 but decreases
the number of mutations explored during the experiment.
However, recently published data on cytidine deaminase-UGI
fusion has shown they could lead to off-target editing in vivo at a
much higher rate compared to adenine base editors or the Cas9
nuclease44,45. Although there is currently no high-throughput
data on the off-target activity of Target-AID, data generated in
yeast in the original publication suggests far lower rates than
those recently reported in mammalian cells15. Recently, Sadhu,
Bloom et al examined the effects of premature stop codons (PTC)
in essential genes using a high-throughput variant construction
method that relied on homology directed repair using a mutated
repair template13. They observed that a significant fraction of
PTCs can be tolerated, but only within the last 30 codons of a
protein. Outside this window, they found no link between PTC
tolerance and position within the coding sequence, something
which we also did not observe both for SGGs and non-SGG
gRNAs (Supplementary Fig. 17A, B).

We provide key empirical data on gRNA dependant para-
meters that can be used to optimize base editing efficiency. Based
on our results, selecting gRNAs with high binding energy to their
genomic targets and favoring those which target the non-coding
strand can increase the chance of high editing activity. Impor-
tantly, our observations differ from what has been reported for
Cas9-based genome editing. High gRNA RNA/DNA duplex
binding has instead been associated with lower mutagenesis
efficiency46. Our data thus confirms the observation that para-
meters associated with Cas9 editing cannot readily be transferred
to base editors47. Furthermore, the temperature at which
experiments are performed might affect efficiency for certain
gRNAs with low gRNA-DNA duplex binding energy and should
be considered when designing base editing experiments in dif-
ferent organisms15. However, it remains to be confirmed whether
the enrichment for certain gRNA properties we observed are
specific to Target-AID or will also be transferable to other base
editors as this may depend on the enzymatic properties of these
proteins. Acquiring large paired gRNA and mutagenesis outcome
datasets similar to those available for Cas9 genome editing24 will
allow for more refined models for rational base editing activity
prediction.

The field of base editing is rapidly evolving, with new tools
being developed constantly. One of the most recent additions to
this fast-growing toolkit are engineered Cas9 enzymes with
broadened PAM specificities48, which have already been shown to
be compatible with base editors. More flexible PAM requirements
are especially useful for base editing applications, as they increase
the number of sites to be edited and also the number of potential
gRNAs per site, increasing the chances of choosing optimal
properties and thus greater efficiency25. Our method allows an
experimental scale that bridges saturation mutagenesis methods

and genome-wide knock-out studies, alleviating the current
trade-off between mutational diversity and the number of targets
genes to generate new biological insights.

Methods
Generation of the gRNA library targeting essential genes. The Target-AID base
editor has an activity window between base 15 and 20 in the gRNA sequence
starting from the PAM, and the efficiency at these different positions was char-
acterized in Nishida et al.15. This allowed us to predict the mutational outcomes for
a specific gRNA provided the number of editable bases in the window is not too
high. To select gRNAs, we parsed a database of gRNA targets for the S. cerevisiae
reference genome sequences (strain S288c)49 and applied several selection criteria.
Since the screen was to be performed in the BY4741 strain, all gRNAs (unique seed
sequence, no NAG site) within the database were aligned to the reference genome
of that strain using Bowtie50. Only gRNAs with a single perfect alignment were
kept for subsequent steps. To select gRNAs amenable to Target-AID base editing,
we selected gRNAs with cytosines within the highest activity window of the editor
(positions −17 to −19 starting from the PAM). To limit the total number of
possible mutational outcomes, gRNAs with three cytosines within the window were
removed as well as those with two cytosines at the highest activity positions. Next,
we filtered out any gRNA containing a BsaI restriction site to prevent errors during
the library cloning step.

The list of essential genes (n= 1156)3,4 was used to discriminate between
gRNAs targeting essential or non-essential genes (retrieved from http://www-
sequence.stanford.edu/group/yeast_deletion_project/Essential_ORFs.txt). Among
non-essential genes, data from Qian et al.51 was used to create categories of fitness
effects. If the fitness score (averaged across media and replicates) of a gene was
below 0.75, it was categorized as “high effect” on fitness. We excluded auxotrophic
marker genes as well as CAN1, LYP1, and FCY1 because those could be used as co-
selection markers23. Gene deletions with an averaged fitness score between 0.999
and 1.001 were categorized as having “no detectable effect” on fitness. We selected
gRNAs targeting essential and high effect genes, as well as gRNAs targeting a set of
38 randomly chosen no effect genes. To further limit the space of gRNAs
examined, only gRNAs mapping from the 0.5th percent to the 75th percent of
coding sequences were chosen. We also added gRNAs targeting all known yeast
introns (Ares lab Database 4.3)52 and putative non-functional peptides53 selected
with the same strategy except for the constraints on gRNA position within the
sequence of interest. This resulted in a set of 39,989 gRNAs. Library properties are
summarized in Supplementary Fig. 1. To assign a co-editing risk score to each
gRNA, we defined four categories using the extended activity window sequence
composition shown in Table 1.

Library construction. The plasmids, oligonucleotides, and media used in this study
are listed in Supplementary Table 2 and Supplementary Data 2 and 3 respectively.
The oligo pool was synthesized by Arbor Biosciences (Michigan, USA) and was
cloned into the pDYSCKO vector using Golden Gate Assembly (New England
Biolabs, Massachusetts, USA) with the following reaction parameters: in a 20 μl
reaction, 2 μl NEB GG buffer 10X, 1 μl pDYSCKO (75 ng μl−1), 1 μl Oligo pool
(2 ng μl−1), 1 μl NEB GG mix, 15 μl PCR grade water. The ligation mix was
transformed in E. coli strain MC1061 ([araD139]B/r Δ(araA-leu)7697 ΔlacX74
galK16 galE15(GalS) λ-e14-mcrA0 relA1 rpsL150(strR) spoT1 mcrB1 hsdR2)54 using
a standard chemical transformation protocol and plated on ampicillin selective
media to select for transformants. Serial dilution of cells after outgrowth were
plated and then used to calculate the total number of clones produced by the
cloning reaction. Quality control of the assembly was performed by Sanger
sequencing ~10 clones per assembly reaction. Cells were scraped from plates by
adding ~5 ml of sterile water, incubating a few minutes at room temperature, and
then using a glass rake to resuspend colonies. Resuspended plates were then pooled
together in a single flask per reaction, which was then used to make glycerol stocks
of the library and cell pellets for plasmid extraction. The Qiagen Midi-Prep kit
(Qiagen, Germany) was used to extract plasmid DNA from cell pellets by following
the manufacturer’s instructions. The DNA concentration of each eluate was then
measured using a NanoDrop (Thermo Fisher, Massachusetts, USA), and a nor-
malized master library for yeast transformation was assembled by combining equal
quantities of each assembly pool.

Table 1 Sequence patterns of co-editing risk categories.

Co-editing risk
category

Very Low Low Moderate High

Sequence
patterns

NCDDDNN NCDDCNN NCDCNNN NCCDNNN
NDCDDNN NDCDCNN
NDDCDNN NDDCCNN

N any nucleotide, D A or T or G.
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Base editing time course and deep sequencing. Cells were co-transformed with
pKN1252 and the pDYSCKO plasmid bearing the gRNA of interest using the
protocol described below for the large-scale experiment. Transformant plates were
scraped by adding ~5 ml of sterile water, incubating a few minutes at room tem-
perature, and then using a glass rake to resuspend colonies. The resuspended cells
(one pool per guide) were used to inoculate two replicate cultures per guide. Cells
went through the same induction protocol as for the large-scale experiment, but
scaled down to a 24 deepwell plate (see Supplementary Figs. 3 and 7). The volumes
used were: 3 ml for the initial SC-UL+ glucose culture, 4 ml for the SC-UL+
glycerol step, 3 ml for the SC-UL+ galactose step, and 3 ml for the liquid cana-
vanine co-selection step. At the end of the galactose induction step, 100 μl of a 1/
2000 dilution of each well was plated on SC-ULR+ canavanine solid media to
obtain editing survivor colonies. At the glycerol to galactose media switch, a ~1 OD
pellet was sampled by spinning cells at 16,100 × g and removing the media. Cell
pellets were then stored at −80 °C for subsequent DNA extraction. The same
method was used to sample ~1 OD at T= 6 h in galactose, ~2 OD at T= 12 h in
galactose, and ~3 OD at the end of canavanine co-selection. Plates with selected
colonies (edited at the CAN1 locus) were soaked in water and scraped, and 1.4 ml
of the resulting cell suspension was sampled and stored.

Genomic DNA was extracted from cell pellets using a standard phenol-
chloroform method from each sample55 and quantified by NanoDrop (Thermo
Fisher, Massachusetts, USA). For each sample, we aimed to sequence both the
target edit site and the CAN1 co-selection edit site. To multiplex the 240 samples in
the same sequencing library, we used the row-column-plate-indexed PCR (RCP-
PCR) approach56. Briefly, each target locus was amplified from genomic DNA and
universal adapter sequences were added to each end of the amplicon. A 1/2500
dilution of the resulting product was then used as template with a set of 10 (rows)
by 12 (column) primers used to index each sample in a second PCR reaction. All
samples for the same locus were then pooled together and normalized according to
electrophoresis gel band intensity and then purified using magnetic beads. A third
and final PCR reaction on the purified pools was then used to add plate indexes
and Illumina adapters: this reaction was performed in quadruplicate and the
products from the four reactions were pooled together for purification. Sequencing
was performed using the MiSeq Reagent Kit v3 on an Illumina MiSeq for 600 cycles
(IBIS sequencing platform, Université Laval).

After sequencing, samples were demultiplexed using a custom python script
with the reads being subdivided in four (plate barcode forward, row barcode,
column barcode, and plate barcode reverse). After demultiplexing, the forward and
reverse reads were merged using the PANDA-Seq software57. Reads were then
aligned to reference locus sequences using the Needle software from EMBOSS58. A
custom script was then used to parse the alignments and extract genotype
information for each read. The sequencing reads for the base editing deep
sequencing experiment were deposited on the NCBI SRA as accession number
PRJNA552472.

Library transformation in yeast. Competent BY4741 (MATa his3Δ1 leu2Δ0
met15Δ0 ura3Δ0) cells were first transformed with the pKN1252 (p315-GalL-
Target-AID) plasmid using a standard lithium acetate method59. Briefly, 50 ml of
yeast cells in exponential growth (0.6–0.7 OD) were pelleted (500 × g, 5 min),
washed with 5 ml sterile water, then washed with 5 ml SORB solution (100 mM
lithium acetate, 10 mM Tris pH 8.0, 1 mM EDTA, 1 M sorbitol). The cells were
then resuspended in 360 μl SORB and 40 μl carrier DNA (salmon sperm DNA 10
mgml−1). Cells were then aliquoted and stored at −80 °C until use. After thawing,
each 20 μl aliquot was incubated with ~1 μg plasmid DNA and 100 μl Plate mixture
(PEG 3350 40%, Lithium acetate 10 mM, Tris-Cl pH 7.5 10 mM, EDTA 1mM) at
room temperature for 30 min. DMSO (15 μl) was then added and cells are incu-
bated at 42 °C for 20 min. The cells were then pelleted (400 × g, 3 min) and the
supernatant removed before being resuspended in 100 μl YPD media for a 4 h
outgrowth incubation at 30 °C without shaking. Transformants were selected by
plating cells on SC-L. After 48 h of growth, multiple colonies were used to inoculate
a starter liquid culture for competent cells preparation using the same protocol: a
culture volume of 200 ml was used to generate enough competent cells for mass
transformation. The large-scale library transformation was performed by com-
bining 40 transformation reactions performed with 40 μl of competent cells and
5 μl of plasmid library (240 ng μl−1) after the outgrowth stage and plating 100 μl
aliquots on SC-UL: cells were then allowed to grow at 30 °C for 48 h. A 1/
1000 serial dilution of the cell recovery was plated in 5 replicates and used to
calculate the number of transformants obtained. The total number of transfor-
mants reached 3.48 × 106 CFU, corresponding to about 100X coverage of the
plasmid pool.

Target-AID mutagenesis and competition screening. The mutagenesis protocol
is an upscaled version of our previously published method23 and is shown in
Supplementary Fig. 7. Transformants were scraped by spreading 5 ml sterile water
on plates and then resuspending cells using a glass rake. All plates were pooled
together in the same flask, and the OD of the yeast resuspension was measured
using a Tecan Infinite F200 plate reader (Tecan, Switzerland). Pellets corre-
sponding to about 6 × 108 cells were washed twice with SC-UL without a carbon
source and then used to inoculate a 100 ml SC-UL+ 2% glucose culture at 0.6 OD
two times to generate replicates A and B. Cells were allowed to grow for 8 h before

1 × 109 cells were pelleted and used to inoculate a 100 ml SC-UL+ 5% glycerol
culture. After 24 h, 5 × 108 cells were pelleted and either put in SC-UL+ 5%
galactose for mutagenesis or SC-UL+ 5% glucose for a mock induction control.
Target-AID expression (from pKN1252) was induced for 12 h before 1 × 108 cells
were pelleted and used to inoculate a canavanine (50 μg ml−1) co-selection culture
in SC-ULR. After 16 h of incubation, 5 × 107 cells of each culture were used to
inoculate 100 ml SC-UR, which was grown for 12 h before 5 × 107 cells were used
to inoculate a final 100 ml SC-UR culture which was grown for another 12 h. Cell
pellets were washed with sterile water between each step, and all incubation
occurred at 30 °C with agitation. ~2 × 107 cells were taken for plasmid DNA
extraction at the end of each mutagenesis and competition screening step.

Yeast plasmid DNA extraction. Yeast plasmid DNA was extracted using the
ChargeSwitch Plasmid Yeast Mini Kit (Invitrogen, California, USA) by following
the manufacturer’s protocol with minor modifications: Zymolase 4000 U/ml
(Zymo Research, California, USA) was used instead of lyticase, and cells were
incubated for 1 h at room temperature, 1 min at −80 °C, and then incubated for
another 15 min at room temperature before the lysis step. Plasmid DNA was eluted
in 70 μl of E5 buffer (10 mM Tris-HCl, pH 8.5) and stored at −20 °C for use in
library preparation.

Next-generation library sequencing preparation. Libraries were prepared by
using two PCR amplification steps, one to amplify the gRNA region of the
pDSYCKO plasmid pool and the second to add sample barcodes as well as the
Illumina p5 and p7 sequences60. Oligonucleotides for library preparation are
shown in the first part of the oligonucleotide table. Reaction conditions for the first
PCR were as follows (25 μl reaction): 5 μl Phusion HF buffer (NEB) 5X, 0.5 μl
dNTPs 10 mM, 1.25 μl pDYSCKO_gRNA_for 10 μM, 1.25 μl pDYSCK-
O_gRNA_rev 10 μM, 0.5 μl Phusion polymerase, 5 μl Template DNA (< 1 ng/μl),
11.7 μl PCR grade water. The following thermocycler protocol was used: 98 °C for
30 s, then 16 cycles of 98 °C for 10 s, 58 °C for 15 s, 72 °C for 5 s and then 72 °C for
5 s. The resulting product was verified on a 2% agarose gel colored with Midori
Green Advance (Nippon Genetics, Japan) and then gel-extracted and purified using
the FastGene Gel/PCR Extraction Kit (Nippon Genetics, Japan). The purified
products were used as the template for the second PCR reaction, with the following
conditions (20 μl reaction): 10 μl Phusion Mastermix-HF (NEB), 3.75 μl P5-
barcode-X oligo 1.333 μM, 3.75 μl P7-barcode-Y oligo 1.333 μM, 2.5 μl Template
DNA (~1 ng/μl). The following thermocycler protocol was then used: 98 °C for
30 s, then 15 cycles of 98 °C for 10 s, 60 °C for 10 s, 72 °C for 1 min and then 72 °C
for 5 min. PCR products were verified on a 2% agarose gel colored with Midori
Green Advance (Nippon Genetics, Japan) and then gel-extracted and purified using
the FastGene Gel/PCR Extraction Kit (Nippon Genetics, Japan). Library quality
control and quantification were performed using the KAPA Library Quantification
Kit for Illumina platforms (Kapa Biosystems, Massachusetts, USA) following the
manufacturer’s instructions. Libraries were then run on a single lane on HiSeq 2500
(Illumina, California, USA) with paired-end 150 bp in fast mode.

Large-scale screen sequencing data analysis. The custom Python scripts used to
analyze data are available on github (https://github.com/Landrylab/
Despres_et_al_2020), and packages and software used are presented in Supple-
mentary Table 3. Raw sequencing files have been deposited on the NCBI SRA,
accession number PRJNA552472. Briefly, reads were separated into three sub-
sequences for alignment: the P5 barcode, the gRNA, and the P7 barcode. Each of
these was aligned using Bowtie50 to an artificial reference genome containing either
the barcodes or gRNA sequences flanked by the common amplicon sequences. The
gRNA sequences were aligned both with 0 or 1 mismatch allowed, and misalign-
ment position and type were stored. Information on barcode and gRNA alignment
for each read was stored and combined to generate a barcode count per library
table, a list of mismatches in alignments for each gRNA in each library, as well as
mismatch types and counts for the same gRNA across all libraries.

Synthesis error within oligonucleotide libraries is one of the major limits of
current large-scale genome editing screening methods. These errors can introduce
gRNA sequences that cannot perform mutagenesis because the gRNA sequence
does not match a site in the genome. We refer to those gRNAs as SE gRNAs. In our
experiment, the stringent selection criteria used to select gRNAs limited the risk of
off-target effects even for gRNAs with one mismatch, minimizing the risk that a
synthesis error gRNA could lead to editing at another site in the genome. We,
therefore, decided to use highly abundant SE gRNAs as negative controls to obtain
a null distribution of abundance variation for gRNAs with no fitness effects. To
differentiate synthesis errors from sequencing errors, we used the mismatch type
and count table to assess whether a particular mismatched gRNA constitutes a too
large fraction of the reads associated with a gRNA to be simply a repeated
sequencing error. For each error, we test if:

Nreadsformismatch

Nperfectalignment
> 0:075

and discarded the reads associated with the specific mismatch alignment. This
threshold was obtained by iteratively testing different threshold values in an effort
to maximize the gain in gRNA counts while minimizing the noise added by
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incorrect assignments. Read counts per library for abundant (Nreadsformismatch>1000)
SE gRNAs were kept to serve as negative controls when measuring fitness effects,
resulting in a set of 1032 abundant SE gRNAs. gRNAs absent from more than half
of the libraries (4446 out of 39,989) were removed from the analysis before gRNA
abundance calculations.

Detecting mutations with high fitness effects. Barcode sequencing competition
experiments use DNA barcodes to measure the relative abundance of many dif-
ferent subpopulations of cells grown in the same pool61. Since each gRNA is linked
to its possible mutagenesis outcomes, we can use relative gRNA abundance to
detect mutations with significant fitness effects. To do so, the log2 of the relative
abundance of a barcode after mutagenesis is compared with its abundance at the
end of the screen:

Δ log2gRNA ¼ log2ð
NreadsgRNAt1

Nreadst1

Þ � log2ð
NreadsgRNAt0

Nreadst0

Þ ð1Þ

For each gRNA, the measured fitness effect is the product of the effect of the
mutational outcomes on growth and of the mutation rate within the cell
subpopulation bearing this particular gRNA. Relative counts will also vary
stochastically because of variation in sequencing coverage depending on the time
point and replicate. To reduce the impact of these effects, a minimal read count at
the end of the galactose induction step was used to filter out low abundance
gRNAs. We found a minimal read threshold of n= 54 provided a good tradeoff
between the number of gRNAs eligible for analysis and inter-replicate correlation.

Using the distribution of Δlog2 values, we calculated a z-score for each gRNA in
both replicates. We then averaged z-scores between replicates and compared the
score distributions between SE and Non-SE gRNAs. This revealed the presence of a
left-skewed tail in the z-score distribution of valid gRNAs, which is less prevalent in
the SE gRNAs. We then averaged z-scores between replicates and fit a normal
distribution to the distribution of SE gRNA z-scores. We used then used this
distribution to estimate the False Positive Rate as a function of gRNA z-score. This,
in turn, allowed us to calculate a False Discovery Rate based on the number of hits
at a set FPR threshold (Supplementary Fig. 9B and C). We set the z-score threshold
so that the FDR= 10%.

Complementation assays. Experiments were performed in heterozygous deletion
mutants from the YKO project heterozygous deletion strain set (Dharmacon,
Colorado, USA). For each gene, a single colony streaked from the glycerol stock
was used to prepare competent cells using the previously described lithium acetate
protocol59. To generate mutant alleles of the genes of interest, we performed site-
directed mutagenesis on the appropriate MoBY collection plasmid27. These cen-
tromeric plasmids encode the yeast gene of interest under the control of their
native promoters and terminators. Mutagenesis reactions were performed with the
following reaction setup for a 25 μl reaction: 5 μl Kapa HiFi buffer (Kapa bios-
ciences) 5X, 0.75 μl dNTPs 10 μM, 0.75 μl mutation_for 10 μM (see Supplementary
Data 2), 0.75 μl mutation_rev 10 μM (see Supplementary Table 7), 0.5 μl Kapa Hot-
start polymerase, 0.75 μl Template plasmid DNA (15 ng μl−1), 16.5 μl PCR grade
water. The following thermocycler protocol was then used: 95 °C for 5 min, then 20
cycles of 98 °C for 20 s, 60 °C for 15 s, 72 °C for 12 min and then 72 °C for 18 min.
After amplification, the mutagenesis product was digested with DpnI for 2 h at 37 °
C and 5 μl was transformed in E. coli strain BW23474 (F−, Δ(argF-lac)169,
ΔuidA4::pir-116, recA1, rpoS396(Am), endA9(del-ins)::FRT, rph-1, hsdR514, rob-1,
creC510)62. Transformants were plated on 2YT+ Kan [50 μg ml−1]+Chlo [12.5 μg
ml−1] and grown at 37 °C overnight. Plasmid DNA was then isolated from clones
and sent for Sanger sequencing (CHUL sequencing platform, Université Laval,
Québec City, Canada) to confirm mutagenesis success.

Competent cells of target genes were transformed with the appropriate mutant
plasmids as well a the original plasmid bearing the wild-type gene and the empty
vector63, and transformants were selected by plating on SC-U (MSG). Multiple
independent colonies per transformation were then put on sporulation media until
sporulation could be confirmed by microscopy. For tetrad dissection, cells were
resuspended in 100 μl 20T zymolyase (200 μg ml−1 dilution in water) and
incubated for 20 min at room temperature. Cells were then centrifuged and
resuspended in 50 μl 1 M sorbitol before being streaked on a level YPD plate. All
dissections were performed using a Singer SporePlay microscope (Singer
Instruments, UK). Plate pictures were taken after 5 days incubation at room
temperature except for the RAP1 plasmid complementation test for which the
picture was taken after 3 days. Pictures are shown in Source Image File 1 in the
Source Data.

Strain construction for confirmations in RAP1. Because the MoBY collection
plasmid for RAP1 cannot fully complement the gene deletion (Source image file 1
in the Source Data.), we instead performed confirmations by engineering mutations
in a diploid strain to create heterozygous mutants. RAP1 was first tagged with a
modified version of fragment DHFR F[1,2] (the first half) of the mDHFR
enzyme64. The mDHFR[1,2]-FLAG cassette was amplified using gene-specific
primers and previously described reaction parameters64. Cells were transformed
with the cassette using the previously described transformation protocol and were
plated on YPD+Nourseothricine (YPD+Nat in Media table). Positive clones

were identified by colony PCR and successful fragment fusion was confirmed by
Sanger sequencing (CHUL sequencing platform). We then mated the confirmed
clones with strain Y8205 (Matα can1::STE2pr-his5 lyp1::STE3prLEU2 Δura3 Δhis3
Δleu2, kindly gifted by Charlie Boone) by inoculating a 4 ml YPD culture with
overnight starter cultures of both strains and letting the culture grow overnight.
Cells were then streaked on YPD+Nat and diploid cells were identified by colony
PCR using mating type diagnosis primers65.

To create heterozygous deletion mutants of the target gene, we amplified a
modified version of the URA3 cassettes that could then be targeted with the
CRISPR-Cas9 system to integrate our mutations of interest using homologous
recombination at the target locus. The oligonucleotides we used differ from those
commonly used in that they amplify the cassette without the two LoxP sites present
at both ends. We found it necessary to remove those sites as one common
mutational outcome after introducing a double-stranded break in the URA3
cassette was inter-LoxP site recombination without the integration of donor DNA
at the target locus. These modified cassettes recombine with DNA upstream the
target gene on one end and the mDHFR F[1,2] fusion on the other, ensuring that
the heterozygous deletion is always performed at the locus that is already tagged.
Cassettes were transformed using the standard lithium acetate method, and cells
were plated on SC-U (MSG) selective media. Heterozygous deletion mutants were
then confirmed by colony PCR.

CRISPR-Cas9 mediated Knock-in of targeted mutations. Mutant alleles of target
genes were amplified in two fragments using template DNA from the haploid
tagged strain (See Supplementary Fig. 14). The two fragments bearing mutations
were then fused together by a second PCR round to form the final donor DNA.
This DNA was then co-transformed with a plasmid bearing Cas9 and a gRNA
targeting the URA3 cassette for HDR mediated editing using a standard protocol66.
Clones were then screened by PCR to verify donor DNA and mutation integration
at the target locus. The targeted region of RAP1 was then Sanger sequenced (CHUL
sequencing platform, Univesité Laval, Québec City, Canada) to confirm the pre-
sence of the mutation of interest. Heterozygous mutants were sporulated on solid
media until sporulation could be confirmed by microscopy using the same protocol
previously described. The plates were then replica plated on YPD+Nat media, and
the pictures were taken after 5 days at room temperature (Source Image File 2 in
the Source Data.).

Evolutionary rate measurements and variant abundance. Evolutionary rates
were calculated using the Rate4site software67 using multiple sequence alignments and
phylogenies from PhylomeDB V468 as input and using the raw calculated rates as
output. Variant data was compiled using data from the 1002 Yeast Genome Project
(http://1002genomes.u-strasbg.fr/files/allReferenceGenesWithSNPsAndIndelsInferred.
tar.gz). Strain-specific protein coding sequence were aligned to the S288c sequence
using Fastx3669 with the following parameters: fastx36 -p -s -VT10 -T 6 -m 10
-n −3 querymultifasta.fasta ref_orf.db 12\> fasta_out. Align-
ments were then parsed with a custom Python script to identify variants. Variant
abundance was measured as the number of strains in the dataset in which a specific
variant was found. If the coding sequence contained ambiguous nucleotides (ex.: R or
Y), separate coding sequences were generated for each possibility and each possible
variant was considered as a separate occurrence.

Analysis of the properties of stop codon generating gRNAs. To analyse the
sequence and target properties of gRNA inducing the creation of stop codons, data
from multiple sources was compiled. For each target gene, length and chromo-
somal strand was obtained from the Saccharomyces Genome Database using the
Yeastmine query interface70. Distance to centromere was obtained by calculating
the minimal distance between the start of the gene and one extremity of the
centromere coordinates. RNA:DNA duplex melting temperature of gRNA
sequence with target genomic DNA was calculated using the MeltingTemp module
from Biopython71, which uses values taken from Sugimoto et al.72. Correlation
between gRNA/DNA duplex melting temperatures was assessed using Spearman’s
rank correlation.

Variant effect prediction analysis and GO enrichment. All prediction data
except the Envision scores were extracted from the aggregated data of the Mutfunc
database31. Precomputed values were downloaded directly from the FTP server
(http://ftp.ebi.ac.uk/pub/databases/mutfunc/mutfunc_v1/yeast/). This database
includes precomputed SIFT scores for 5498 yeast proteins, as well as predicted
variant ΔΔG values based on protein structure (n= 1057), homology models (n=
1703) and protein–protein interaction interfaces (n= 1109). Mutations with ΔΔG
> 1 considered destabilizing.

Precomputed values from Envision2 were downloaded directly from the
database website (https://envision.gs.washington.edu/shiny/envision_new/, file
yeast_predicted_2017-03-12.csv). This file contained 34857830 mutation effect
predictions spread across 4011 genes. The distribution of Envision scores for the
genes targeted in the experiment that are included in the database are shown in
Supplementary Fig. 12.

We downloaded the Uniprot database for yeast genes (query: uniprot-
proteome_UP000002311) with annotations covering the following properties:
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Metal binding, Nucleotide binding, Site, DNA binding, Calcium binding, Binding
site, Active site, Motif. We found that 6295 gRNAs targeted genes which have
annotations in Uniprot, of which 519 were GNEs (ratioAll= 0.0749). Statistical
enrichments were calculated using this set of gRNAs as the reference population.
Gene enrichments were performed using the PANTHER gene list analysis tool73.
The list of genes for which 2 or more GNEs were detected was tested for
enrichment against all genes targeted by the library using Fisher’s exact test and
False Discovery Rate calculations. The Gene Ontology datasets used were: GO
molecular function complete, GO biological process complete, and GO cellular
component complete.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All raw sequencing data has been deposited on the NCBI BioProject as accession number
PRJNA552472. The gRNA screen scores, predicted mutation outcomes, mutation effect
predictors scores, as well as other relevant annotations are provided in Supplementary
Data 1. Source image files for the tetrad dissections are presented as Source Image 1 and
2. The data underlying each figure is detailed in the source data file. Data on yeast gene
essentiality was obtained from http://www-sequence.stanford.edu/group/
yeast_deletion_project/. The mutfunc database is available at http://ftp.ebi.ac.uk/pub/
databases/mutfunc/mutfunc_v1/yeast/. The Envision database is available at https://
envision.gs.washington.edu/shiny/envision_new/. The Uniprot database can be found at
https://www.uniprot.org/. The Saccharomyces database can be accessed at https://www.
yeastgenome.org/. The PANTHER gene ontology tool can be accessed at http://
pantherdb.org/. Phylome DB V4 can be accessed at http://phylomedb.org/. The data
from the 1002 yeast genome project can be accessed at http://1002genomes.u-strasbg.fr/
files/allReferenceGenesWithSNPsAndIndelsInferred.tar.gz. All other relevant data are
available from the authors upon reasonable request.

Code availability
The custom Python scripts used to analyze the are available on github (https://github.
com/Landrylab/Despres_et_al_2020), and packages and software used are presented in
Supplementary Table 3. The base editing deep sequencing data was obtained using a
MiSeq sequencer that uses proprietary Illumina software to generate fastq files. The high-
throughput sequencing data for the genome-wide screen was collected using a HiSeq
2500 sequencer that uses proprietary Illumina software to generate fastq files. The
following programs were used during data analysis: PANDA-Seq v2.11, Needle
(EMBOSS v6.6.0.0), Bowtie v1.2.1.1, Rate4site 3.0.0, and FASTX v36.3.8. The following
packages for Python 2.7 were used: pandas 0.23.4, matplotlib v2.2.3, numpy v1.15.4, scipy
v1.1.0, seaborn v0.9.0, tqdm v4.32, and Biopython v1.71. For Python 3.6, the following
packages were used: pandas v0.24.2, numpy v1.16.2, matplotlib v3.0.3, scipy v1.2.1 and
seaborn v0.9.0.
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