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A framework to efficiently describe and share
reproducible DNA materials and construction
protocols
Hideto Mori 1,2,3 & Nozomu Yachie 1,4✉

DNA constructs and their annotated sequence maps have been rapidly accumulating with the

advancement of DNA cloning, synthesis, and assembly methods. Such resources have also

been utilized in designing and building new DNA materials. However, as commonly seen in

the life sciences, no framework exists to describe reproducible DNA construction processes.

Furthermore, the use of previously developed DNA materials and building protocols is usually

not appropriately credited. Here, we report a framework QUEEN (framework to generate

quinable and efficiently editable nucleotide sequence resources) to resolve these issues and

accelerate the building of DNA. QUEEN enables the flexible design of new DNA by using

existing DNA material resource files and recording its construction process in an output file

(GenBank file format). A GenBank file generated by QUEEN can regenerate the process code

such that it perfectly clones itself and bequeaths the same process code to its successive

GenBank files, recycling its partial DNA resources. QUEEN-generated GenBank files are

compatible with existing DNA repository services and software. We propose QUEEN as a

solution to start significantly advancing the material and protocol sharing of DNA resources.
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Designing and building DNA are essential processes in
most life science research today. The introduction of
exogenous DNA into cells and animals allows for mon-

itoring of molecular and cellular behaviors, and reverse engi-
neering and functional enhancement of target systems. Chemical
DNA synthesis1 and assembly methods2 have largely advanced in
the last couple of decades, leading to the whole synthesis of
bacterial3,4 and yeast chromosomes5–7 and the establishment of
biofoundries towards the automated production of engineered
microorganisms8,9. A total of several hundred thousand DNA
plasmids have been deposited to public DNA repository services,
such as AddGene10 and DNASU11. While the growing DNA
resources have been successfully accelerating life science research,
previously established DNA resources have yet to be fully utilized
to produce new DNA constructs efficiently. Current DNA
resource sharing and building methods have major room for
improvement in optimal recycling and crediting of DNA
resources and protocols.

Standardization of materials and knowledge descriptions are
important to best mobilize those established previously for new
material development. In synthetic biology, there have been
several efforts devoted for (1) the standardization of DNA
modules and (2) the standardization of functional DNA anno-
tations. To standardize DNA modules, “DNA brick” systems have
been proposed in which DNA fragments are sandwiched by a
limited set of compatible restriction enzyme (RE) digestion sites
such that these modular DNA parts can be reused in different
DNA assemblies by ligation12–15. Such a system would accelerate
the DNA construction process when a sufficient amount of
modular parts are available. (They have yet to be widely used by
the community, probably because the number of compatible parts
have yet to meet the diverse demands in biology, or because PCR-
based fragment preparation and highly specific overlap DNA
assembly methods16–21 have become the mainstream and freed
molecular cloning from RE-based techniques.) The synthetic
biology open language (SBOL)22 has been proposed to provide
functional annotation of gene circuits encoded in DNA sequen-
ces. SBOL enables users to define genetic parts and their func-
tional wiring diagrams like electronic circuits in a computer
readable format, consequently allowing the design of sequences
that confer specific functions through simulating different
circuits.

While the DNA brick systems and SBOL have contributed to
the efficient collection of highly modular DNA resources and the
systematic annotation of functional DNA resources, respectively,
they focus on the standardization of input and output DNA
materials. The third key angle to advance new DNA construction
with rapidly accumulating DNA resources would be the devel-
opment of a standardized “process ontology” or “protocol lan-
guage” to describe DNA construction processes. We envision an
efficient DNA design and construction system, whereby the most
optimal construction protocol of a target DNA is autonomously
formulated with a combination of maximal use of existing DNA
materials and knowledge on how previous DNA materials have
been practically constructed. We are, however, one step away
from establishing such a system. Most of us have still been
designing DNA manually with GUI software tools, and the pro-
tocols have been described in natural language.

There are three major challenges to realize a process ontology
of DNA construction that is widely accepted by the life science
community. First, a standardized framework needs to be devel-
oped to universally frame any types of changes in DNA sequences
with various types of annotations. While the methods to build
and alter DNA materials have been diversifying, such as we are
seeing with genome editing technologies23, the current DNA
editing software tools cannot assist users in incorporating new

methods or allow them to develop new plugins. Second, there
needs to be an innovative way to motivate the community
without substantial costs. Third, such a process ontology would
require another system to evaluate the reproducibility and com-
pleteness of protocols, which also needs to be accepted by the
community. Accompanying these three challenges, a system that
globally traces the inheritance of previously established DNA
material and protocol resources would be largely beneficial to
measure the impacts of previous resources and to credit their
developers.

A quine in computer science is a program that replicates a copy
of itself without the need for any inputs. The intriguing concept
of quine, which first appeared in the mid-twentieth century24,
provides us fruitful thoughts on self-replicating machines and
their potentials. In this study, inspired by this concept, we
developed a simple, versatile framework called QUEEN (a fra-
mework to generate “quinable” and efficiently editable nucleotide
sequence resources) that resolves all the above-mentioned chal-
lenges and enables efficient description, sharing, and crediting of
DNA materials and building protocols25. QUEEN is a Python
package where step-by-step building processes of DNA and their
dynamic sequence changes can be freely described and simulated.
QUEEN-generated DNA products can be output in the GenBank
(gbk) file format that is widely used to describe annotated DNA
maps. Due to its flexible file format, QUEEN-generated gbk files
achieve several unique features. First, they can regenerate the
quine codes that generated themselves using QUEEN (Fig. 1a).
Just like the research community has already been doing, DNA
materials can be deposited to a DNA repository service together
with their gbk files created by QUEEN (Fig. 1b). While it serves as
a regular gbk file, the file’s construction process information can
also be recovered by QUEEN, where the reproducibility of the
protocol is certified by this clonability. Second, in designing a new
DNA construct using QUEEN, when DNA parts are taken from
existing QUEEN-generated gbk files (Fig. 1c) or a protocol gen-
erated from a QUEEN-generated gbk file is modified (Fig. 1d), the
newly produced gbk file inherits the parental material informa-
tion as well as their building process histories. This feature will be
a backbone for establishing new ways of evaluating genetic
resources, protocols, and developers based on how they are
inherited in the community (Fig. 1e). QUEEN-generated gbk files
can easily be spread through the existing databases and DNA
repository services as they can be treated as regular gbk files by
existing tools. This feature will prime the promotion of the new
material and protocol sharing model.

Results
Queen. QUEEN is a Python module. It was designed so that other
software tools and databases can easily be developed to enhance
QUEEN’s basic capabilities. In QUEEN, double-stranded (ds)
DNA objects with their annotated feature objects are first pro-
vided as inputs. A dsDNA object can be given by specifying a
DNA sequence or importing a sequence file in GenBank or
FASTA file format. The dsDNA objects can then be manipulated
by using (i) four basic operational functions, “cut,” “flip,” “join,”
and “modify ends” and (ii) two search functions for DNA
sequence and annotation features, which can collectively repre-
sent any of the standard molecular cloning processes. We also
prepared (iii) two other direct edit functions for DNA sequence
and annotation features (Fig. 2). A dsDNA object generated or
edited by QUEEN can be output into a gbk file that encodes the
quine code to replicate the entire operational process.

A linear or circular dsDNA object can be segmented into
multiple fragment objects or linearized by “cut.” Each cut site can
be defined by a single DNA sequence position (blunt-end cut), two
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sequence positions for both strands (sticky-end cut), or a feature
object that represents an RE rule. Any feature objects, such as gene
names and primer binding sites, are inherited from the input
dsDNA objects to the corresponding sequence regions of the
newly generating objects. Annotation feature objects on the cut
boundaries that are split are also passed to the new fragments,
each with a qualifier specifying it as a broken feature. For
convenience, we also implemented “crop” as a branch function of
“cut” to extract a segment bound by two cut sites. Any number of
dsDNA objects can be assembled at once by “join,” which requires
the connecting DNA end structures to be compatible (i.e., only
blunt ends and compatible sticky ends can be joined). If the
assembly reconstitutes any sequences that are associated to any
feature objects annotated in the parental dsDNA, the same feature
objects are also restored in the generating dsDNA. Any single-
stranded (ss)DNA sequence can be added to or removed from
whichever strand of dsDNA ends by the “modify ends” operation.
This operation enables the description of any overlap-based DNA
assembly methods requiring long overlapping DNA end sequences
by changing such ends to sticky ends. dsDNA fragments can also
be “flipped.” This operation can be used to, for example, model

DNA sequence inversion via site-specific DNA recombination
(e.g., Cre-loxP and FLP-FRT) with “cut” and “join.”

When a user constructs a new DNA using QUEEN, they do not
need to remember the complete information of all the dsDNA
objects being treated and their feature objects. The search
functions allow them to obtain information on target sequence
and feature objects storing a target data by text search, using
regular expression or fuzzy matching. Similarly, the direct edit
functions enable searching of DNA sequence and feature objects,
but they also enable direct editing of the target objects obtained
by the search. The direct edit function of dsDNA objects can be
employed to model genome editing, and the direct edit function
of feature objects can enable creation of new feature objects and
removal and editing of existing feature objects. To export and
display information of dsDNA objects, QUEEN also provides five
output functions: “output gbk,” “print sequence,” “print feature,”
“visualize map,” and “visualize flow.” Especially, “visualize map”
and “visualize flow” generate annotated sequence maps and
operational history flow charts of dsDNA objects, respectively.
These output functions support users in programming QUEEN
codes with an interactive programming environment, such as
Jupyter Notebook, where users can promptly check progress of
their DNA construction. (The links to some examples are
provided in Supplementary Table 1.)

QUEEN progressively records all operations into the “history”
attribute of a feature object defined for the entire dsDNA object.
This history attribute stores not only the operational history for
the present DNA construction but also the past operational
histories of the parental dsDNA objects whose partial fragments
are inherited to the present construction. Therefore, while a
QUEEN-generated gbk file can be operated by other non-QUEEN
supported tools, it also has abilities to produce a quine code that
self-replicates and provides the information of how previous
DNA materials have been manipulated and inherited to the
present DNA construct. Furthermore, while programming
QUEEN codes, users can group subsets of operational flows

Fig. 2 Overview of QUEEN operational functions.

Fig. 1 QUEEN. a QUEEN enables the generation of a quine code from a gbk file. b A QUEEN-generated gbk file can be deposited to an existing DNA
repository as a regular gbk file. c When DNA sequences are partially or fully inherited from previous QUEEN-generated gbk files to build a new DNA, the
producing gbk file can contain all the production histories of the ancestral gbk files. d When a QUEEN script obtained from a previously established gbk file
is modified to design the building process of a new DNA, such a history is also inherited by the produced gbk file. e A QUEEN-generated gbk file traces its
previously utilized DNA materials and protocols, enabling the assessment of community impact of each DNA resource or developer.
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and provide them with narrative descriptions of methodological
procedures, which enables DNA builders to provide experimental
procedures in natural language along with their process semantic
descriptions. This also enables the direct generation of “Materials
and Methods” descriptions from QUEEN-generated gbk files. We
envision that the further development of GUI-based software
tools will allow users to program the DNA construction process
without making them recognize any of the above-mentioned
QUEEN programming semantics.

Simple molecular cloning. We demonstrated that QUEEN
enables the description of various DNA construction processes,
simulation of dynamic DNA programs, and production of “quin-
able” QUEEN-generated gbk files. We first tested a description of a
simple gene cloning procedure to derive a lentiviral plasmid
(pRS112) that we constructed previously26 (Fig. 3a). In this plas-
mid construction, an enhanced green fluorescent protein (eGFP)-
encoding cassette was amplified from the pLV-eGFP plasmid by
PCR with primers that have overhang sequences encoding EcoRI
and BamHI RE sites. The amplified PCR product and the desti-
nation plasmid pLV-SIN-CMV-Puro were both digested by EcoRI
and BamHI and ligated to obtain the final product.

This entire process was described using QUEEN with 11
operational steps (Fig. 3b). To obtain the PCR product, the 18-bp
3′ regions of the two primers were searched in the template. The
internal DNA sequence flanked by the primer sites was then
obtained by “crop,” followed by the concatenation of the entire
primer sequence to both ends by “modify ends” to produce the
PCR product. Next, EcoRI and BamHI cut sites and digestion
patterns were searched and defined as feature objects for both the
PCR product and destination lentiviral plasmid backbone. The
feature objects defining the cut sites were used for the double
digestion by “cut.” Finally, the digested fragments with compa-
tible sticky ends were connected by “join.” We confirmed that the
generated sequence was identical to that of the previously
generated gbk file, and that the QUEEN-generated gbk file could
produce a quine code that clones the same plasmid.

Resource inheritance. To demonstrate QUEEN can describe
overlap DNA assembly and produce gbk files that can track their

building histories and those of inherited DNA parts, we replicated
the construction processes of six CRISPR base-editor plasmids:
pCMV-Target-AID, pCMV-Target-ACE, pCMV-AIDmax, pCMV-
Target-ACEmax, pCMV-BE4max(C), and pCMV-ACBEmax, that
we constructed previously26 (Fig. 4a). The entire construction pro-
cesses of these plasmids were based on PCR amplification of DNA
fragments and Gibson Assembly, where, upon some plasmid con-
structions, their DNA parts were recycled for other plasmid
constructions.

In brief, PCR fragment preparations were modeled by
searching for primer annealing sites followed by “crop” and
“modify ends,” as in the preceding example above. Gibson
Assembly reactions were modeled by generating long compatible
sticky ends using “modify ends” and assembling them by “join.”
We started from four existing plasmids and one plasmid that we
prepared by cloning a synthetic DNA fragment. pCMV-Target-
AID, pCMV-Target-ACE, pCMV-AIDmax, and pCMV-Target-
ACEmax were constructed by Gibson Assembly of fragments
amplified from the initial set of plasmids, but pCMV-BE4max(C)
and pCMV-ACBEmax were constructed using fragments partially
obtained from pCMV-AIDmax and pCMV-Target-ACEmax,
respectively. Through these assemblies, we sometimes amplified
adjacent small DNA blocks for annotated DNA units separately
and assembled them back in the same order in a destination
plasmid for better PCR amplification of shorter fragments, rather
than facing difficulties in amplifying longer PCR products. We
demonstrated that even if DNA sequence regions with feature
objects were once broken by this operation, they could be restored
in the final plasmids (Fig. 4b and Supplementary Table 2).

We confirmed that the QUEEN scripts could generate target
DNA sequences identical to those constructed previously. Their
quine codes and complete operational histories could also be
produced from the generated gbk files (Supplementary Figs. 1 and 2).
Notably, we confirmed that the process histories of pCMV-
BE4max(C) and pCMV-ACBEmax successfully inherited those of
pCMV-Target-AIDmax and pCMV-Target-ACEmax, respectively
(Supplementary Fig. 2). Furthermore, the construction processes of
pCMV-Target-ACEmax and pCMV-ACBEmax were also able to be
designed similarly to those of pCMV-Target-AIDmax and pCMV-
BE4max(C), where two and three fragments were shared, respec-
tively. Therefore, we also generated two other gbk files for pCMV-

Fig. 3 Simple molecular cloning. a Conceptual diagram representing the cloning of eGFP into a lentiviral plasmid backbone. b QUEEN operational flow
representing the same DNA cloning process. The visualization was directly generated from the output gbk file using QUEEN. The file shape, round, and
uncolored rectangular objects represent the input gbk files, dsDNA objects, and feature objects, respectively. Colored boxes represent QUEEN operational
functions with the colors corresponding to Fig. 2. Open and closed circle-headed lines represent information flows as QUEEN objects and input parameters,
respectively.
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Target-ACEmax and pCMV-ACBEmax by retrieving the quine
codes from the pCMV-Target-AIDmax and pCMV-BE4max(C) gbk
files and directly editing them. The gbk files generated through this
editing strategy successfully recorded the partial inheritance of the
previous protocols (Supplementary Fig. 3), showing that QUEEN
enables tracking of the partial and full inheritance of both DNA
materials and their construction processes.

Simulation of dynamic DNA changes. As seen in yeast mating-
type cassette switching, site-specific DNA recombination, meiotic
chromosomal recombination, and genome editing, DNA is not a
static object but can act dynamically in a programmed manner.
Although highly efficient genome editing methods can be used to
construct DNA plasmids27,28 and synthetic genetic circuits29–32

(both involving DNA sequence changes), no standard framework
is proposed to simulate changes in annotated dsDNA sequences.
To demonstrate QUEEN can also program, simulate, and share
such dynamic DNA circuits, we demonstrated the construction of

a genetic six-input, one-output Boolean Logic Look Up Table
(LUT) demonstrated in BLADE33 using QUEEN (Fig. 5a). In this
circuit, upon input of site-specific DNA recombinases, the circuit
DNA sequence alters by multistep deletions and/or inversions of
segments sandwiched by corresponding recombinase target
sequences. The input patterns of four recombinases (Vica, B3,
PhiC31, and Bxb1) configures one of the 16 Boolean logic gates,
and the remaining two recombinases (Cre and FLP) serve as two
input signals to the logic gate (Fig. 5b). The output is given as
GFP expression. The intertwined segment recombinations yield
one or none of the four GFP genes to be expressed, depending on
the signal input pattern.

We implemented DNA segment deletion by “cut” and “join,”
and inversion by “cut,” “flip,” and “join.” After obtaining a gbk file
describing the initial state of the DNA circuit, we loaded it to a
QUEEN script and simulated its behaviors for all of the 64 possible
signal input patterns (Fig. 5c and Supplementary Table 3). All the
input patterns conferred the expected DNA sequence outcomes.
We also output the resulting dsDNA objects to gbk files and

Fig. 4 Base editor plasmid constructions. a The construction lineages of base editor plasmids with recycling of their DNA sequences. The plasmid names
with gray, yellow, and white boxes represent those obtained from Addgene, newly synthesized, or described by QUEEN in this study, respectively.
b Recovery of the “Cas9(D10A)” feature after joining two fragments each from a different DNA object having the same feature.
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demonstrated that their quine codes and process histories could be
derived from the output files (Supplementary Fig. 4).

Discussion
There have been several software packages developed to design
molecular cloning procedures and generate annotated plasmid

files, such as ApE34, Benchling (https://www.benchling.com/),
Geneious35, j536, Pydna37, Raven38, and SnapGene (https://www.
snapgene.com/). While most of them are GUI-based software
tools for local client computers, Benchling is a cloud-based
software tool and Pydna is a Python programming package that
enables the description of DNA construction processes. Notably,
the operational functions of these tools are all implemented for
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specific cloning methods, such as Gibson Assembly, Golden Gate
Assembly, and traditional RE digestion and ligation cloning.
These specified functions seem intuitive and convenient for users
as long as they design DNA materials with the prepared set of
methods, but lack the elasticity to incorporate new DNA building
methods. In contrast, we hypothesized that DNA construction
processes can be generalized by the combination of four basic
operations, “cut,” “flip,” “join,” and “modify ends.” We demon-
strated that this system could easily describe the equivalent
operations of the previous tools in various examples. Although a
range of currently available genomic resources are genetically
modified by gene deletion and transgene insertion through
homologous DNA repair, Cre-loxP, and genome editing, no
software tool to describe all these processes has been developed.
The simulation of the BLADE circuit showed that QUEEN is also
capable of flexibly describing a process of dynamic DNA
sequence alterations. In combination with the existing simulation
platforms for transcription unit (TU)-based genetic circuits39–41,
QUEEN could also accelerate the construction of genetic circuits
and cells having those.

Two major contrivances were implemented in QUEEN to
permeate its use in the life science community: (1) the use of gbk
file format and (2) the self-reproducibility of process codes. We
first determined that the gbk file format is the foremost format
that QUEEN needed to adopt for the life science community that
widely uses gbk files to share DNA maps. Furthermore, while
SBOL has been proposed to enable organized annotation of
structural and functional aspects of DNA sequences in contrast to
the gbk file format, we considered it important to demonstrate the
concept of QUEEN in the more unorganized semantic system of
gbk to showcase its versatility in file format. Recording of self-
reproducible operational history in the output gbk file and their
inheritance by descendant gbk files are also unique features of
QUEEN that have great potential to change the ways of building
DNA. The ability to generate a quine code from a QUEEN-
generated gbk file not only certifies its reproducibility but also
enables the accompaniment of protocols and those of parental
DNA materials with the generating gbk file. This is the key feature
of QUEEN that enables the community to share DNA materials
and protocols together without asking for the additional cost of
consciously managing these two separately. A protocol retrieved
from a QUEEN-generated gbk file can be edited to generate a new
DNA construct. This process can also be recorded and passed to a
newly producing gbk file. Benchling and SnapGene are also
capable of recording DNA construction processes. However, they
are unable to easily share the construction protocols outside of
the software environments nor track the deep inheritance of
materials and protocols from one DNA construct to another.

If the life science community starts generating and sharing gbk
files using QUEEN or QUEEN-compliant software tools, there
will be new ways of evaluating resources and developers’ con-
tributions. The impacts of materials and protocols can be eval-
uated not only by a “trending” information of how many times
they are requested by other researchers, like shown in Addgene,
but also by how they are inherited in successive products even
over multiple generations. However, the current implementation
of QUEEN for the recovery of process histories from their gbk
files has two potential issues. First, as the community starts uti-
lizing QUEEN-generated gbk files, the sizes of new QUEEN-
generated gbk files will keep increasing. Second, the current
QUEEN framework highly depends on the community’s goodwill
and cannot certify original developers of DNA materials or that
the utilization of previously created resources is properly recorded
in QUEEN-generated gbk files. For cell strains, CellRepo has
proposed for the deposition of engineered strains with specific
DNA barcode identifiers where CellRepo serves as a certification

authority42. While the current issues of QUEEN could be resolved
by a similar cloud-based certification authority system that
authorizes, stores, and traces DNA material and protocol
resources together with QUEEN-compliant client software tools,
such a framework would not be most effective until the sharing of
both DNA material and protocol resources is widely communized
with the current QUEEN framework.

Once QUEEN is widely adopted in the life science community,
it would also accelerate the development of an efficient DNA
design system. There have been algorithms proposed to compute
efficient DNA assembly steps for target DNA products from a
given synthetic DNA library resource36,38,43. The wealth of
practical DNA construction process knowledge made available by
QUEEN will greatly contribute to such an automated design of
DNA construction processes, where a building process of user-
requested DNA can be autonomously designed with the most
optimal recycling of available DNA materials and reagents in a
user’s environment, and with practically the best DNA cloning
strategy chosen based on the knowledge of how many times the
community has succeeded in similar methods. This idea could
also be implemented to gene synthesis and assembly automation
systems44.

While challenging, it is also important to establish similar sys-
tems to share materials and reproducible protocols in other
experimental domains that require more complex descriptions.
Laboratory automation of natural science experiments in general
requires the full semantic description of reproducible protocols in a
robot-executable manner. Ideally, this would resolve many of the
current issues in life science, including the reproducibility crisis45.
However, significant technical and social contrivances would be
needed to realize this goal primarily because the development of
robotic systems requires tremendous investments, and laboratory
automation communities have not been coherently progressing
(different projects develop their own systems which cannot easily be
integrated). As represented by Protocol Activity Modeling Language
(PAML) (https://github.com/Bioprotocols/paml), several process
ontologies have been proposed to describe life science experimental
processes. However, we believe good practices like the ones
implemented in QUEEN are important to motivate the current life
science community to adopt a new system without feeling a sub-
stantial cost. A potential direction for reproducible process sharing
and laboratory automation of various experimental domains could
be the development of a standardized “multiscale” process seman-
tics, where any experimental process of any resolution can be
programmed, from the resolution of current material and methods
descriptions with researchers’ best efforts to that of robotic execu-
tions with their APIs. It may be possible to encourage the com-
munity to first use such a semantics for daily experiments with the
support of GUI-assisted editors, whose description can be shared,
reused, and elaborated later for laboratory automation with robot-
ics. If widespread, this could accelerate the momentum of labora-
tory automation towards a similar vision that we propose here with
QUEEN. Accordingly, we report QUEEN as a framework to
accelerate describing and sharing of DNA material and protocol
resources, and as a starting point to ponder a similar system for
entire life sciences domains with laboratory automation.

Methods
Implementation of QUEEN. QUEEN was implemented as a Python 3.7 module. It
requires BioPython46 mainly for GenBank file parsing. The visualization of
annotated DNA sequence maps (visualizemap) and operational process flow charts
(visualizeflow) from QUEEN objects are dependent on Python Matplotlib47 and
Graphviz48 modules, respectively. The detailed usage of each function implemented
in the QUEEN module is described in the GitHub repository (https://github.com/
yachielab/QUEEN/blob/master/README.md). Example QUEEN scripts are pro-
vided as Jupyter Notebook files at https://github.com/yachielab/QUEEN/tree/
master/demo/tutorial.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Of the gbk files used as input files for the simulation of base editor plasmid constructions,
pLV-eGFP, pCMV-ABE7.10, pcDNA3.1_pCMV-nCas-PmCDA1-ugi pH1-gRNA(HPRT),
pCMV-BE4max, and pCMV-ABEmax were obtained from Addgene (Plasmid IDs: 36083,
102919, 79620, 112903, and 112905, respectively). The sequence file for pLV-SIN-CMV-Puro
was obtained from Takara Bio, Inc. (Japan, https://catalog.takara-bio.co.jp/DNA_seq/
pLVSIN-CMV_pur.zip). The gbk file for pRS112 and pUC-optimized-PmCDA1-ugi
encoding the codon-optimized PmCDA1-UGI was created using Benchling. Some detail
sequence feature annotations of input files were added manually before using them for the
demonstration (the modified files are available at https://github.com/yachielab/QUEEN/tree/
master/demo/sakata_et_al_2020). The gbk file used for the simulation of the Boolean logic
LUT circuit was downloaded from Addgene (Plasmid ID 87554), to which sequence feature
annotations for the site-specific recombination sites were added manually before the
demonstration (the modified file is available at https://github.com/yachielab/QUEEN/tree/
master/demo/Weinberg_et_aL_2017).

Code availability
QUEEN is an open-source software package distributed with MIT License. The entire
package, installation, and user’s manual are available at the GitHub repository (https://
github.com/yachielab/QUEEN/). All of the source codes for QUEEN are placed in
https://github.com/yachielab/QUEEN/tree/master/QUEEN. The QUEEN scripts used to
construct the base editor plasmids and the simulation of the Boolean logic LUT are
provided as Jupyter Notebook files at https://github.com/yachielab/QUEEN/tree/master/
demo/sakata_et_al_2020 and https://github.com/yachielab/QUEEN/tree/master/demo/
Weinberg_et_aL_2017, respectively. All of the Jupyter Notebook files for the
demonstrations in this study are available in GitHub and made executable in Google
Colaboratory (Supplementary Table 1).
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